model hamiltonian
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 40)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Leonardo Evaristo de Sousa ◽  
Piotr de Silva

Thermally activated delayed fluorescence (TADF) is a phenomenon that relies on the upconversion of triplet excitons to singlet excitons by means of reverse intersystem crossing (rISC). It has been shown both experimentally and theoretically that the TADF mechanism depends on the interplay between charge transfer and local excitations. However, the difference between the diabatic and adiabatic character of the involved excited states is rarely discussed in the literature. Here, we develop a diabatization procedure to implement a 4-state model Hamiltonian to a set of TADF molecules. We provide physical interpretation for the Hamiltonian elements and show their dependence on the electronic state of the equilibrium geometry. We also demonstrate how vibrations affect TADF efficiency by modifying the diabatic decomposition of the molecule. Finally, we provide a simple model that connects the diabatic Hamiltonian to the electronic properties relevant to TADF and show how such relationship translates into different optimization strategies for rISC, fluorescence and overall TADF performance.


2021 ◽  
Author(s):  
H. G. Ganev

Abstract A microscopic description of the low-lying positive-parity rotational bands in $^{20}$Ne is given within the framework of the symplectic-based proton-neutron shell-model approach provided by the proton-neutron symplectic model (PNSM). For this purpose a model Hamiltonian is used which includes an algebraic interaction, lying in the enveloping algebra of the $Sp(12,R)$ dynamical group of the PNSM, that introduces both horizontal and vertical mixings of different $SU(3)$ irreducible representations within the $Sp(12,R)$ irreducible collective space of $^{20}$Ne. A good overall description is obtained for the excitation energies of the ground and first two excited $\beta$ bands, as well as for the ground state intraband $B(E2)$ quadrupole collectivity and the known interband $B(E2)$ transition probabilities between the low-lying collective states without the use of an effective charge.


2021 ◽  
Author(s):  
Ruben Staub ◽  
Stephan Steinmann

Model Hamiltonians based on the so-called cluster expansion (CE), which consist of a linear fit of parameters corresponding to geometric patterns, provide an efficient and rigorous means to quickly evaluate the energy of diverse arrangements of adsorbate mixtures on reactive surfaces as typically relevant for heterogeneous catalysis. However, establishing the model Hamiltonian is a tedious task, requiring the construction and optimization of many geometries. Today, most of these geometries are constructed by hand, based on chemical intuition or random choices. Hence, the quality of the training set is unlikely to be optimal and its construction is not reproducible. Herein, we propose a reformulation of the construction of the training set as a strategy-based game, aiming at an efficient exploration of the relevant patterns constituting the model Hamiltonian. Based on this reformulation, we exploit a typical active learning solution for machine-learning such a strategy game: an upper confidence tree (UCT) based framework. However, in contrast to standard games, evaluating the true score is computationally expensive, as it requires a costly geometry optimization. Hence, we augment the UCT with a pre-exploration step inspired by the variance-based Design of Experiments (DoE) methods. This novel mixed UCT+DoE framework allows to automatically construct a well adapted training set, minimizing computational cost and user-intervention. As a proof of principle, we apply our UCT+DoE approach on the CO oxidation reaction on Pd(111), for which a relevant model Hamiltonian has been established previously. The results demonstrate the effectiveness of the custom built UCT and its significant benefits on a DoE-based approach.


2021 ◽  
Author(s):  
Tucker Carrington ◽  
Sangeeth Kallullathil

Present day computers do not have enough memory to store the high-dimensional tensors required when using a direct product basis to compute vibrational energy levels of a polyatomic molecule with more than about 5 atoms. One way to deal with this problem is to represent tensors using a tensor format. In this paper, we use CP format. Energy levels are computed by building a basis from vectors obtained by solving linear equations. The method can be thought of as a CP realization of a block inverse iteration method with multiple shifts. The CP rank of the tensors is fixed and the linear equations are solved with an Alternating Least Squares method. There is no need for rank reduction, no need for orthogonalization, and tensors with rank larger than the fixed rank used to solve the linear equations are never generated. The ideas are tested by computing vibrational energy levels of a 64-D bilinearly coupled model Hamiltonian and of acetonitrile(12-D).


2021 ◽  
Author(s):  
Alfonso Rojas-Domínguez ◽  
Renato Arroyo-Duarte ◽  
Fernando Rincón-Vieyra ◽  
Matías Alvarado

Abstract Background and Objective: Cancer Immunoediting (CI) describes the cellular-level interaction between tumor cells and the Immune System (IS) that takes place in the Tumor Micro-Environment (TME). CI is a highly dynamic and complex process comprising three distinct phases (Elimination, Equilibrium and Escape) wherein the IS can both protect against cancer development as well as, over time, promote the appearance of tumors with reduced immunogenicity. We present an agent-based model for the biological system in the TME, intended to simulate CI. Methods: Our model includes agents for tumor cells and for elements of the IS. The actions of these agents are governed by probabilistic rules, and agent recruitment (including cancer growth) is modeled via logistic functions. The system is formalized as an analogue of the Ising model from statistical mechanics to facilitate its analysis. The model was implemented in the Netlogo modeling environment and simulations were performed to verify, illustrate and characterize its operation. Results: Our model is capable of generating the three phases of CI; it requires only a couple of control parameters and is robust to these. We demonstrate how our simulated system can be characterized through the Ising-model energy function, or Hamiltonian, which captures the “energy” involved in the interaction between agents and presents it in clear and distinct patterns for the different phases of CI. Conclusions: The presented model is very flexible and robust, captures well the behaviors of the target system and can be easily extended to incorporate more variables such as those pertaining to different anti-cancer therapies. System characterization via the Ising-model Hamiltonian is a novel and powerful tool for a better understanding of CI and the development of more effective treatments.


2021 ◽  
Vol 22 (14) ◽  
pp. 7361
Author(s):  
Elham Faraji ◽  
Roberto Franzosi ◽  
Stefano Mancini ◽  
Marco Pettini

By resorting to a model inspired to the standard Davydov and Holstein-Fröhlich models, in the present paper we study the motion of an electron along a chain of heavy particles modeling a sequence of nucleotides proper to a DNA fragment. Starting with a model Hamiltonian written in second quantization, we use the Time Dependent Variational Principle to work out the dynamical equations of the system. It can be found that, under the action of an external source of energy transferred to the electron, and according to the excitation site, the electron current can display either a broad frequency spectrum or a sharply peaked frequency spectrum. This sequence-dependent charge transfer phenomenology is suggestive of a potentially rich variety of electrodynamic interactions of DNA molecules under the action of electron excitation. This could imply the activation of interactions between DNA and transcription factors, or between DNA and external electromagnetic fields.


2021 ◽  
Author(s):  
Stefan Brackertz ◽  
Stephan Schlemmer ◽  
Oskar Asvany ◽  
Sven Kristkeitz
Keyword(s):  

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 473
Author(s):  
Bo Peng ◽  
Karol Kowalski

Recently a new class of quantum algorithms that are based on the quantum computation of the connected moment expansion has been reported to find the ground and excited state energies. In particular, the Peeters-Devreese-Soldatov (PDS) formulation is found variational and bearing the potential for further combining with the existing variational quantum infrastructure. Here we find that the PDS formulation can be considered as a new energy functional of which the PDS energy gradient can be employed in a conventional variational quantum solver. In comparison with the usual variational quantum eigensolver (VQE) and the original static PDS approach, this new variational quantum solver offers an effective approach to navigate the dynamics to be free from getting trapped in the local minima that refer to different states, and achieve high accuracy at finding the ground state and its energy through the rotation of the trial wave function of modest quality, thus improves the accuracy and efficiency of the quantum simulation. We demonstrate the performance of the proposed variational quantum solver for toy models, H2 molecule, and strongly correlated planar H4 system in some challenging situations. In all the case studies, the proposed variational quantum approach outperforms the usual VQE and static PDS calculations even at the lowest order. We also discuss the limitations of the proposed approach and its preliminary execution for model Hamiltonian on the NISQ device.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingqiang Gu ◽  
Jiayu Li ◽  
Hongyi Sun ◽  
Yufei Zhao ◽  
Chang Liu ◽  
...  

AbstractThe topological surface states of magnetic topological systems, such as Weyl semimetals and axion insulators, are associated with unconventional transport properties such as nonzero or half-quantized surface anomalous Hall effect. Here we study the surface anomalous Hall effect and its spectral signatures in different magnetic topological phases using both model Hamiltonian and first-principles calculations. We demonstrate that by tailoring the magnetization and interlayer electron hopping, a rich three-dimensional topological phase diagram can be established, including three types of topologically distinct insulating phases bridged by Weyl semimetals, and can be directly mapped to realistic materials such as MnBi2Te4/(Bi2Te3)n systems. Among them, we find that the surface anomalous Hall conductivity in the axion-insulator phase is a well-localized quantity either saturated at or oscillating around e2/2h, depending on the magnetic homogeneity. We also discuss the resultant chiral hinge modes embedded inside the side surface bands as the potential experimental signatures for transport measurements. Our study is a significant step forward towards the direct realization of the long-sought axion insulators in realistic material systems.


2021 ◽  
Author(s):  
Muzaffar Iqbal Khan ◽  
Trilok Chandra Upadhyay

Abstract A modified four sublattice pseudospin lattice coupled model Hamiltonian by adding extra spin-lattice interaction, direct spin-spin interaction has been used to study dielectric properties for ammonium dihydrogen phosphate (ADP) crystal. Using the double-time temperature-dependent Green’s function method, the expressions for soft mode frequency, dielectric permittivity and loss tangent have been derived. By fitting the model values of various physical parameters, the thermal variations of the above quantities are calculated and compared with the experimental results. Our theoretical obtained results are in good agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document