scholarly journals A Geometrical Regularity Criterion in Terms of Velocity Profiles for the Three-Dimensional Navier–Stokes Equations

2019 ◽  
Vol 72 (4) ◽  
pp. 545-562 ◽  
Author(s):  
C V Tran ◽  
X Yu

Summary In this article, we present a new kind of regularity criteria for the global well-posedness problem of the three-dimensional Navier–Stokes equations in the whole space. The novelty of the new results is that they involve only the profiles of the magnitude of the velocity. One particular consequence of our theorem is as follows. If for every fixed $t\in (0,T)$, the ‘large velocity’ region $\Omega:=\{(x,t)\mid |u(x,t)|>C(q)\left|\mkern-2mu\left|{u}\right|\mkern-2mu\right|_{L^{3q-6}}\}$, for some $C(q)$ appropriately defined, shrinks fast enough as $q\nearrow \infty$, then the solution remains regular beyond $T$. We examine and discuss velocity profiles satisfying our criterion. It remains to be seen whether these profiles are typical of general Navier–Stokes flows.

2019 ◽  
Vol 9 (1) ◽  
pp. 633-643
Author(s):  
Hugo Beirão da Veiga ◽  
Jiaqi Yang

Abstract H.-O. Bae and H.J. Choe, in a 1997 paper, established a regularity criteria for the incompressible Navier-Stokes equations in the whole space ℝ3 based on two velocity components. Recently, one of the present authors extended this result to the half-space case $\begin{array}{} \displaystyle \mathbb{R}^3_+ \end{array}$. Further, this author in collaboration with J. Bemelmans and J. Brand extended the result to cylindrical domains under physical slip boundary conditions. In this note we obtain a similar result in the case of smooth arbitrary boundaries, but under a distinct, apparently very similar, slip boundary condition. They coincide just on flat portions of the boundary. Otherwise, a reciprocal reduction between the two results looks not obvious, as shown in the last section below.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Weihua Wang ◽  
Guopeng Zhou

This paper is concerned with the regularity criterion of weak solutions to the three-dimensional Navier-Stokes equations with nonlinear damping in critical weakLqspaces. It is proved that if the weak solution satisfies∫0T∇u1Lq,∞2q/2q-3+∇u2Lq,∞2q/2q-3/1+ln⁡e+∇uL22ds<∞,  q>3/2, then the weak solution of Navier-Stokes equations with nonlinear damping is regular on(0,T].


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Zujin Zhang

We consider the three-dimensional Boussinesq equations and obtain a regularity criterion involving the pressure gradient in the Morrey-Companato spaceMp,q. This extends and improves the result of Gala (Gala 2013) for the Navier-Stokes equations.


Analysis ◽  
2015 ◽  
Vol 35 (3) ◽  
Author(s):  
Isabelle Gallagher

AbstractIn these notes we present some results concerning the existence of global smooth solutions to the three-dimensional Navier–Stokes equations set in the whole space. We are particularly interested in the stability of the set of initial data giving rise to a global smooth solution.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1528
Author(s):  
Mads Kyed

The existence of weak time-periodic solutions to Navier–Stokes equations in three dimensional whole-space with time-periodic forcing terms are established. The solutions are constructed in such a way that the structural properties of their kinetic energy are obtained. No restrictions on either the size or structure of the external force are required.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 42
Author(s):  
Luigi C. Berselli ◽  
Stefano Spirito

We give a rather short and self-contained presentation of the global existence for Leray-Hopf weak solutions to the three dimensional incompressible Navier-Stokes equations, with constant density. We give a unified treatment in terms of the domains and the relative boundary conditions and in terms of the approximation methods. More precisely, we consider the case of the whole space, the flat torus, and the case of a general bounded domain with a smooth boundary (the latter supplemented with homogeneous Dirichlet conditions). We consider as approximation schemes the Leray approximation method, the Faedo-Galerkin method, the semi-discretization in time and the approximation by adding a Smagorinsky-Ladyžhenskaya term. We mainly focus on developing a unified treatment especially in the compactness argument needed to show that approximations converge to the weak solutions.


Sign in / Sign up

Export Citation Format

Share Document