Regularity criteria for the three-dimensional Navier-Stokes equations

2008 ◽  
Vol 57 (6) ◽  
pp. 2643-2662 ◽  
Author(s):  
Chongsheng Cao ◽  
Edriss S. Titi
2019 ◽  
Vol 72 (4) ◽  
pp. 545-562 ◽  
Author(s):  
C V Tran ◽  
X Yu

Summary In this article, we present a new kind of regularity criteria for the global well-posedness problem of the three-dimensional Navier–Stokes equations in the whole space. The novelty of the new results is that they involve only the profiles of the magnitude of the velocity. One particular consequence of our theorem is as follows. If for every fixed $t\in (0,T)$, the ‘large velocity’ region $\Omega:=\{(x,t)\mid |u(x,t)|>C(q)\left|\mkern-2mu\left|{u}\right|\mkern-2mu\right|_{L^{3q-6}}\}$, for some $C(q)$ appropriately defined, shrinks fast enough as $q\nearrow \infty$, then the solution remains regular beyond $T$. We examine and discuss velocity profiles satisfying our criterion. It remains to be seen whether these profiles are typical of general Navier–Stokes flows.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fan Geng ◽  
Shu Wang ◽  
Yongxin Wang

The paper considers the regularity problem on three-dimensional incompressible Navier-Stokes equations in general orthogonal curvilinear coordinate systems. We establish one regularity criteria of the weak solutions involving only in a vorticity component ω 3 and one a priori estimate on the solution that H 3 u 3 L ∞ 0 , T ; L p ℝ 3 is bounded for 1 ≤ p ≤ ∞ to three-dimensional incompressible Navier-Stokes equations in orthogonal curvilinear coordinate systems. These extent greatly the corresponding results on axisymmetric cylindrical flow.


Author(s):  
Yong Zhou

We establish some regularity criteria in terms of the velocity field with weight for the Navier—Stokes equations in ℝ3. It is proved that if the weak solution satisfiesorthen the weak solution actually is regular up to time T.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Sign in / Sign up

Export Citation Format

Share Document