scholarly journals Rational points on elliptic K3 surfaces of quadratic twist type

Author(s):  
Zhizhong Huang

Abstract In studying rational points on elliptic K3 surfaces of the form $$\begin{equation*} f(t)y^2=g(x), \end{equation*}$$ where f, g are cubic or quartic polynomials (without repeated roots), we introduce a condition on the quadratic twists of two elliptic curves having simultaneously positive Mordell–Weil rank, and we relate it to the Hilbert property. Applying to surfaces of Cassels–Schinzel type, we prove unconditionally that rational points are dense both in Zariski topology and in real topology.

Author(s):  
Jie Shu ◽  
Shuai Zhai

Abstract In the present paper, we generalize the celebrated classical lemma of Birch and Heegner on quadratic twists of elliptic curves over ℚ {{\mathbb{Q}}} . We prove the existence of explicit infinite families of quadratic twists with analytic ranks 0 and 1 for a large class of elliptic curves, and use Heegner points to explicitly construct rational points of infinite order on the twists of rank 1. In addition, we show that these families of quadratic twists satisfy the 2-part of the Birch and Swinnerton-Dyer conjecture when the original curve does. We also prove a new result in the direction of the Goldfeld conjecture.


2013 ◽  
Vol 178 (1) ◽  
pp. 287-320 ◽  
Author(s):  
Zev Klagsbrun ◽  
Barry Mazur ◽  
Karl Rubin

2006 ◽  
Vol 73 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Naoya Nakazawa

The purpose of this article is to construct families of elliptic curves E over finite fields F so that the groups of F-rational points of E are cyclic, by using a representation of the modular invariant function by a generator of a modular function field associated with the modular group Γ0(N), where N = 5, 7 or 13.


2016 ◽  
Vol 102 (3) ◽  
pp. 316-330 ◽  
Author(s):  
MAJID HADIAN ◽  
MATTHEW WEIDNER

In this paper we study the variation of the $p$-Selmer rank parities of $p$-twists of a principally polarized Abelian variety over an arbitrary number field $K$ and show, under certain assumptions, that this parity is periodic with an explicit period. Our result applies in particular to principally polarized Abelian varieties with full $K$-rational $p$-torsion subgroup, arbitrary elliptic curves, and Jacobians of hyperelliptic curves. Assuming the Shafarevich–Tate conjecture, our result allows one to classify the rank parities of all quadratic twists of an elliptic or hyperelliptic curve after a finite calculation.


2010 ◽  
Vol 53 (1) ◽  
pp. 87-94
Author(s):  
Dragos Ghioca

AbstractWe prove that the group of rational points of a non-isotrivial elliptic curve defined over the perfect closure of a function field in positive characteristic is finitely generated.


2013 ◽  
Vol 199 (1) ◽  
pp. 163-188 ◽  
Author(s):  
Massimo Bertolini ◽  
Henri Darmon

Author(s):  
Viliam Ďuriš ◽  
Timotej Šumný

In the modern theory of elliptic curves, one of the important problems is the determination of the number of rational points on an elliptic curve. The Mordel–Weil theorem [T. Shioda, On the Mordell–Weil lattices, Comment. Math. University St. Paul. 39(2) (1990) 211–240] points out that the elliptic curve defined above the rational points is generated by a finite group. Despite the knowledge that an elliptic curve has a final number of rational points, it is still difficult to determine their number and the way how to determine them. The greatest progress was achieved by Birch and Swinnerton–Dyer conjecture, which was included in the Millennium Prize Problems [A. Wiles, The Birch and Swinnerton–Dyer conjecture, The Millennium Prize Problems (American Mathematical Society, 2006), pp. 31–44]. This conjecture uses methods of the analytical theory of numbers, while the current knowledge corresponds to the assumptions of the conjecture but has not been proven to date. In this paper, we focus on using a tangent line and the osculating circle for characterizing the rational points of the elliptical curve, which is the greatest benefit of the contribution. We use a different view of elliptic curves by using Minkowki’s theory of number geometry [H. F. Blichfeldt, A new principle in the geometry of numbers, with some applications, Trans. Amer. Math. Soc. 15(3) (1914) 227–235; V. S. Miller, Use of elliptic curves in cryptography, in Proc. Advances in Cryptology — CRYPTO ’85, Lecture Notes in Computer Science, Vol. 218 (Springer, Berlin, Heidelberg, 1985), pp. 417–426; E. Bombieri and W. Gubler, Heights in Diophantine Geometry, Vol. 670, 1st edn. (Cambridge University Press, 2007)].


Sign in / Sign up

Export Citation Format

Share Document