weil theorem
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Hideaki Ikoma ◽  
Shu Kawaguchi ◽  
Atsushi Moriwaki

The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell–Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
S. Salgado

Abstract A free differential algebra is generalization of a Lie algebra in which the mathematical structure is extended by including of new Maurer-Cartan equations for higher-degree differential forms. In this article, we propose a generalization of the Chern-Weil theorem for free differential algebras containing only one p-form extension. This is achieved through a generalization of the covariant derivative, leading to an extension of the standard formula for Chern-Simons and transgression forms. We also study the possible existence of anomalies originated on this kind of structure. Some properties and particular cases are analyzed.


Author(s):  
Viliam Ďuriš ◽  
Timotej Šumný

In the modern theory of elliptic curves, one of the important problems is the determination of the number of rational points on an elliptic curve. The Mordel–Weil theorem [T. Shioda, On the Mordell–Weil lattices, Comment. Math. University St. Paul. 39(2) (1990) 211–240] points out that the elliptic curve defined above the rational points is generated by a finite group. Despite the knowledge that an elliptic curve has a final number of rational points, it is still difficult to determine their number and the way how to determine them. The greatest progress was achieved by Birch and Swinnerton–Dyer conjecture, which was included in the Millennium Prize Problems [A. Wiles, The Birch and Swinnerton–Dyer conjecture, The Millennium Prize Problems (American Mathematical Society, 2006), pp. 31–44]. This conjecture uses methods of the analytical theory of numbers, while the current knowledge corresponds to the assumptions of the conjecture but has not been proven to date. In this paper, we focus on using a tangent line and the osculating circle for characterizing the rational points of the elliptical curve, which is the greatest benefit of the contribution. We use a different view of elliptic curves by using Minkowki’s theory of number geometry [H. F. Blichfeldt, A new principle in the geometry of numbers, with some applications, Trans. Amer. Math. Soc. 15(3) (1914) 227–235; V. S. Miller, Use of elliptic curves in cryptography, in Proc. Advances in Cryptology — CRYPTO ’85, Lecture Notes in Computer Science, Vol. 218 (Springer, Berlin, Heidelberg, 1985), pp. 417–426; E. Bombieri and W. Gubler, Heights in Diophantine Geometry, Vol. 670, 1st edn. (Cambridge University Press, 2007)].


2020 ◽  
Vol 9 (3) ◽  
pp. 65-71
Author(s):  
Suhaivi Hamdan ◽  
Defrianto Defrianto ◽  
Erwin Erwin ◽  
Saktioto Saktioto

Pada artikel ini akan ditunjukan analisa dari perluasan gauge invariant exact dan metric independent untuk menkontruksi lower-rank field-strength tensor. Hasil ini akan digunakan untuk mengkontruski ulang Chern-Simons-Antoniadis-Savvidy formasi (2n+1) pada dimensi genap dengan menggunakan pendekatan diferensial geometri. Selanjutnya akan dianalisa bentuk topological gravitasi 2-dimensi yang merupakan perluasan dari teorema Chern-Weil yang telah dikembangkan oleh Izurieta-Munoz-Salgado. Hasil dari penelitian ini memperlihatkan bahwa aksi Lagrangian yang sama seperti pada topological gravitasi Chern-Simons forms pada dimensi (2n+1) invariant terhadap Poincare group SO(D−1,1)  SO(D−1,2). This article determine and analyess of the extended gauge invariant exact and metric independent to construct the lower-rank field-strength tensor. These results used to construct Chern-Simons-Antoniadis-Savvidy (2n+1)-forms even dimensions using a differential geometry approach. This result analyzed 2-dimensional topological gravity forms that extended Chern-Weil theorem which has been developed by Izurieta-Munoz-Salgado. These results show similary topological gravity Lagrangian action of Chern-Simons forms (2n+1)-dimension invariant under Poincare group SO(D−1,1)  SO(D−1,2).Keywords: Gauge theory, field-strength tensor, Chern-Weill theorem, Chern-Simons-Antoniadis-Savvidy forms, topological gravity


2020 ◽  
Vol 547 ◽  
pp. 179-219
Author(s):  
Taiki Shibata
Keyword(s):  

2019 ◽  
Vol 2019 (749) ◽  
pp. 65-86
Author(s):  
Pete L. Clark ◽  
Allan Lacy

Abstract We show that a nontrivial abelian variety over a Hilbertian field in which the weak Mordell–Weil theorem holds admits infinitely many torsors with period any given n>1 that is not divisible by the characteristic. The corresponding statement with “period” replaced by “index” is plausible but open, and it seems much more challenging. We show that for every infinite, finitely generated field K, there is an elliptic curve E_{/K} which admits infinitely many torsors with index any given n>1 .


Sign in / Sign up

Export Citation Format

Share Document