scholarly journals Infinitesimal Automorphisms of VB-Groupoids and Algebroids

2019 ◽  
Vol 70 (3) ◽  
pp. 1039-1089 ◽  
Author(s):  
Chiara Esposito ◽  
Luca Vitagliano ◽  
Alfonso Giuseppe Tortorella

Abstract VB-groupoids and algebroids are vector bundle objects in the categories of Lie groupoids and Lie algebroids, respectively, and they are related via the Lie functor. VB-groupoids and algebroids play a prominent role in Poisson and related geometries. Additionally, they can be seen as models for vector bundles over singular spaces. In this paper we study their infinitesimal automorphisms, i.e. vector fields on them generating a flow by diffeomorphisms preserving both the linear and the groupoid/algebroid structures. For a special class of VB-groupoids/algebroids coming from representations of Lie groupoids/algebroids, we prove that infinitesimal automorphisms are the same as multiplicative sections of a certain derivation VB-groupoid/algebroid.

2019 ◽  
Vol 16 (02) ◽  
pp. 1950021
Author(s):  
Andrew James Bruce

Graded bundles are a particularly nice class of graded manifolds and represent a natural generalization of vector bundles. By exploiting the formalism of supermanifolds to describe Lie algebroids, we define the notion of a weighted[Formula: see text]-connection on a graded bundle. In a natural sense weighted [Formula: see text]-connections are adapted to the basic geometric structure of a graded bundle in the same way as linear [Formula: see text]-connections are adapted to the structure of a vector bundle. This notion generalizes directly to multi-graded bundles and in particular we present the notion of a bi-weighted[Formula: see text]-connection on a double vector bundle. We prove the existence of such adapted connections and use them to define (quasi-)actions of Lie algebroids on graded bundles.


2019 ◽  
Vol 124 (2) ◽  
pp. 188-202
Author(s):  
Cleto B. Miranda-Neto

A difficult issue in modern commutative algebra asks for examples of modules (more interestingly, reflexive vector bundles) having prescribed reduction number $r\geq 1$. The problem is even subtler if in addition we are interested in good properties for the Rees algebra. In this note we consider the case $r=1$. Precisely, we show that the module of logarithmic vector fields of the Fermat divisor of any degree in projective $3$-space is a reflexive vector bundle of reduction number $1$ and Gorenstein Rees ring.


2011 ◽  
Vol 57 (2) ◽  
pp. 409-416
Author(s):  
Mihai Anastasiei

Banach Lie AlgebroidsFirst, we extend the notion of second order differential equations (SODE) on a smooth manifold to anchored Banach vector bundles. Then we define the Banach Lie algebroids as Lie algebroids structures modeled on anchored Banach vector bundles and prove that they form a category.


2021 ◽  
Vol 71 (1) ◽  
pp. 199-210
Author(s):  
Aniruddha C. Naolekar

Abstract Let 𝓔 k denote the set of diffeomorphism classes of closed connected smooth k-manifolds X with the property that for any oriented vector bundle α over X, the Euler class e(α) = 0. We show that if X ∈ 𝓔2n+1 is orientable, then X is a rational homology sphere and π 1(X) is perfect. We also show that 𝓔8 = ∅ and derive additional cohomlogical restrictions on orientable manifolds in 𝓔 k .


2011 ◽  
Vol 84 (2) ◽  
pp. 255-260
Author(s):  
EDOARDO BALLICO ◽  
FRANCESCO MALASPINA

AbstractHere we classify the weakly uniform rank two vector bundles on multiprojective spaces. Moreover, we show that every rank r>2 weakly uniform vector bundle with splitting type a1,1=⋯=ar,s=0 is trivial and every rank r>2 uniform vector bundle with splitting type a1>⋯>ar splits.


Author(s):  
Nils A. Baas ◽  
Marcel Bökstedt ◽  
Tore August Kro

AbstractFor a 2-category 2C we associate a notion of a principal 2C-bundle. For the 2-category of 2-vector spaces, in the sense of M.M. Kapranov and V.A. Voevodsky, this gives the 2-vector bundles of N.A. Baas, B.I. Dundas and J. Rognes. Our main result says that the geometric nerve of a good 2-category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. Another 2-category of 2-vector spaces has been proposed by J.C. Baez and A.S. Crans. A calculation using our main theorem shows that in this case the theory of principal 2-bundles splits, up to concordance, as two copies of ordinary vector bundle theory. When 2C is a cobordism type 2-category we get a new notion of cobordism-bundles which turns out to be classified by the Madsen–Weiss spaces.


Author(s):  
Mihajlo Cekić ◽  
Thibault Lefeuvre

Abstract Given a smooth Hermitian vector bundle $\mathcal{E}$ over a closed Riemannian manifold $(M,g)$, we study generic properties of unitary connections $\nabla ^{\mathcal{E}}$ on the vector bundle $\mathcal{E}$. First of all, we show that twisted conformal Killing tensors (CKTs) are generically trivial when $\dim (M) \geq 3$, answering an open question of Guillarmou–Paternain–Salo–Uhlmann [ 14]. In negative curvature, it is known that the existence of twisted CKTs is the only obstruction to solving exactly the twisted cohomological equations, which may appear in various geometric problems such as the study of transparent connections. The main result of this paper says that these equations can be generically solved. As a by-product, we also obtain that the induced connection $\nabla ^{\textrm{End}({\operatorname{{\mathcal{E}}}})}$ on the endomorphism bundle $\textrm{End}({\operatorname{{\mathcal{E}}}})$ has generically trivial CKTs as long as $(M,g)$ has no nontrivial CKTs on its trivial line bundle. Eventually, we show that, under the additional assumption that $(M,g)$ is Anosov (i.e., the geodesic flow is Anosov on the unit tangent bundle), the connections are generically opaque, namely that generically there are no non-trivial subbundles of $\mathcal{E}$ that are preserved by parallel transport along geodesics. The proofs rely on the introduction of a new microlocal property for (pseudo)differential operators called operators of uniform divergence type, and on perturbative arguments from spectral theory (especially on the theory of Pollicott–Ruelle resonances in the Anosov case).


1997 ◽  
Vol 52 (2) ◽  
pp. 428-429 ◽  
Author(s):  
A Yu Vaintrob
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document