scholarly journals Calibration of the Politrack(R) system based on CR39 solid-state nuclear track detectors for passive indoor radon concentration measurements

2015 ◽  
Vol 167 (1-3) ◽  
pp. 302-305
Author(s):  
G. Kropat ◽  
S. Baechler ◽  
C. Bailat ◽  
F. Barazza ◽  
F. Bochud ◽  
...  
2008 ◽  
Vol 5 (4) ◽  
pp. 605-611
Author(s):  
Baghdad Science Journal

The present work aims to investigate approaches, measures and detection of indoor radon level in buildings of the department of physics in college of science of Baghdad University. CR-39 solid state nuclear track detectors were used to measure the radon concentrations inside the rooms, including five laboratories and five workplace rooms in ground and first storey of the department. The average radon concentration at first storey was found to be 43.1±13.2 Bq/m3 and 40.1±13.4 Bq/m3 at the ground storey. The highest level of radon concentration at the first storey in the radioactive sources store was 87.5±29 Bq/m3 while at the ground storey in room(2) was 70.2±24 Bq/m3 which is due to the existence radioactive sources in some selected places at the buildings.


2015 ◽  
Vol 30 (4) ◽  
pp. 294-300 ◽  
Author(s):  
Nisha Mann ◽  
Amit Kumar ◽  
Sushil Kumar ◽  
Rishi Chauhan

Radon, thoron and their progenies in the indoor environment are considered as one of the health hazards. The alpha emitting nature of these gases made it possible to detect in indoor environment with the help of nuclear track detector techniques. The soil is the main source of indoor radon as it contains varying amounts of uranium and thorium. Thus the exhalation of radon from soil and its environmental activity needs to be studied. In the present study, the measurement of the indoor radon-thoron from the indoor environment and exhalation from soil are carried out using solid state nuclear track detector technique from Sirsa and Bhiwani districts of northern part of India. The canister technique was used to measure the radon ex- halation rate from the soil samples collected from the study area and pinhole based radon-thoron dosimeters were used to measure indoor radon and thoron concentration. The results show that indoor radon concentration varied from 9 to 28 Bq/m3, with an average of 18.9 Bq/m3 and from 5 to 21 Bq/m3, with an average of 13.8 Bq/m3, for Bhiwani and Sirsa, respectively. Similarly, thoron concentration varied from 14 to 48 Bq/m3, with average of 28.9 Bq/m3 and 27 to 54 Bq/m3, with the average of 39.0 Bq/m3, for Bhiwani and Sirsa, respectively. The mass exhalation rates from soil samples were also measured, to estimate their contribution to indoor radon. A correlation study was carried out between soil exhalation rates and indoor radon concentration.


2019 ◽  
Vol 11 (22) ◽  
pp. 51-55 ◽  
Author(s):  
Ali A. Al-Hamidawi

    Measurement of radon concentration level was carried out in 40 houses in Al – Najaf city during summer season of 2012. Long term measurement of indoor of old building radon concentrations have been taken, using a previously calibrated passive diffusion dosimeters containing CR – 39 solid state nuclear track detectors which are very sensitive for alpha particles. The measurement of the indoor radon concentration obtained in summer in these regions ranged from 11.654±4.216 Bq.m-3 to 53.610±8.777 Bq.m-3. The results were within universally permitted levels.     


2019 ◽  
Vol 18 (2) ◽  
pp. 177-184 ◽  
Author(s):  
Min-jin Kim ◽  
Sang-su An ◽  
Min-cheol Cho ◽  
Se-il Park ◽  
Jong-min Kim ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Dicu ◽  
B. D. Burghele ◽  
M. Botoş ◽  
A. Cucoș ◽  
G. Dobrei ◽  
...  

AbstractThe present study aims to identify novel means of increasing the accuracy of the estimated annual indoor radon concentration based on the application of temporal correction factors to short-term radon measurements. The necessity of accurate and more reliable temporal correction factors is in high demand, in the present age of speed. In this sense, radon measurements were continuously carried out, using a newly developed smart device accompanied by CR-39 detectors, for one full year, in 71 residential buildings located in 5 Romanian cities. The coefficient of variation for the temporal correction factors calculated for combinations between the start month and the duration of the measurement presented a low value (less than 10%) for measurements longer than 7 months, while a variability close to 20% can be reached by measurements of up to 4 months. Results obtained by generalized estimating equations indicate that average temporal correction factors are positively associated with CO2 ratio, as well as the interaction between this parameter and the month in which the measurement took place. The impact of the indoor-outdoor temperature differences was statistically insignificant. The obtained results could represent a reference point in the elaboration of new strategies for calculating the temporal correction factors and, consequently, the reduction of the uncertainties related to the estimation of the annual indoor radon concentration.


Sign in / Sign up

Export Citation Format

Share Document