scholarly journals Miswiring of Frontostriatal Projections in Schizophrenia

2020 ◽  
Vol 46 (4) ◽  
pp. 990-998 ◽  
Author(s):  
James J Levitt ◽  
Paul G Nestor ◽  
Marek Kubicki ◽  
Amanda E Lyall ◽  
Fan Zhang ◽  
...  

Abstract We investigated brain wiring in chronic schizophrenia and healthy controls in frontostriatal circuits using diffusion magnetic resonance imaging tractography in a novel way. We extracted diffusion streamlines in 27 chronic schizophrenia and 26 healthy controls connecting 4 frontal subregions to the striatum. We labeled the projection zone striatal surface voxels into 2 subtypes: dominant-input from a single cortical subregion, and, functionally integrative, with mixed-input from diverse cortical subregions. We showed: 1) a group difference for total striatal surface voxel number (P = .045) driven by fewer mixed-input voxels in the left (P  = .007), but not right, hemisphere; 2) a group by hemisphere interaction for the ratio quotient between voxel subtypes (P  = .04) with a left (P  = .006), but not right, hemisphere increase in schizophrenia, also reflecting fewer mixed-input voxels; and 3) fewer mixed-input voxel counts in schizophrenia (P  = .045) driven by differences in left hemisphere limbic (P  = .007) and associative (P  = .01), but not sensorimotor, striatum. These results demonstrate a less integrative pattern of frontostriatal structural connectivity in chronic schizophrenia. A diminished integrative pattern yields a less complex input pattern to the striatum from the cortex with less circuit integration at the level of the striatum. Further, as brain wiring occurs during early development, aberrant brain wiring could serve as a developmental biomarker for schizophrenia.

2016 ◽  
Vol 37 (6) ◽  
pp. 2210-2222 ◽  
Author(s):  
Nico Papinutto ◽  
Sebastiano Galantucci ◽  
Maria Luisa Mandelli ◽  
Benno Gesierich ◽  
Jorge Jovicich ◽  
...  

2021 ◽  
Author(s):  
Xufei Tan ◽  
Zhen Zhou ◽  
Jian Gao ◽  
Ruili Wei ◽  
Xiaotong Zhang ◽  
...  

Abstract White matter disruption plays an important role in disorders of consciousness (DOC). The aim of this study was to analyze the connectometry between DOC patients and healthy controls and to explore the relationship between diffusion connectometry and levels of consciousness. Fourteen patients with DOC and 13 sex- and age-matched controls were included in this study. The participants underwent diffusion magnetic resonance imaging (MRI) and T1-weighted structural MRI at 7 Tesla. Diffusion MRI connectometry was performed to investigate the differences between groups, and to subsequently study the correlation between Coma Recovery Scale-Revised (CRS-R) scores and white matter integrity. In DOC patients, the quantitative anisotropy (QA) was significantly reduced in deep white matter tracts, whereas significantly higher QA values were found in the bilateral cerebellum compared with healthy controls. Moreover, the QA values in many tracts within the right hemisphere were higher in patients in a minimally conscious state compared to those in vegetative state/unresponsive wakefulness syndrome. In contrast, many tracts within the left hemisphere of the latter group showed higher QA than the former, which was reflected by the correlation between diffusion connectometry and CRS-R scores. These results indicate that the cerebellum may play an important role in DOC, and the lateralization of the cerebral hemisphere in affected patients may suggest neural compensation.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Laura Zapparoli ◽  
Silvia Seghezzi ◽  
Francantonio Devoto ◽  
Marika Mariano ◽  
Giuseppe Banfi ◽  
...  

Abstract Current neurocognitive models of motor control postulate that accurate action monitoring is crucial for a normal experience of agency—the ability to attribute the authorship of our actions and their consequences to ourselves. Recent studies demonstrated that action monitoring is impaired in Gilles de la Tourette syndrome, a movement disorder characterized by motor and vocal tics. It follows that Tourette syndrome patients may suffer from a perturbed sense of agency, the hypothesis tested in this study. To this end, we recruited 25 Tourette syndrome patients and 25 matched healthy controls in a case-control behavioural and functional magnetic resonance imaging study. As an implicit index of the sense of agency, we measured the intentional binding phenomenon, i.e., the perceived temporal compression between voluntary movements and their external consequences. We found evidence of an impaired sense of agency in Tourette syndrome patients who, as a group, did not show a significant intentional binding. The more reduced was the individual intentional binding, the more severe were the motor symptoms. Specific differences between the two groups were also observed in terms of brain activation patterns. In the healthy controls group, the magnitude of the intentional binding was associated with the activity of a premotor–parietal–cerebellar network. This relationship was not present in the Tourette syndrome group, suggesting an altered activation of the agency brain network for self-generated acts. We conclude that the less accurate action monitoring described in Tourette syndrome also involves the assessment of the consequences of actions in the outside world. We discuss that this may lead to difficulties in distinguishing external consequences produced by their own actions from the ones caused by others in Tourette syndrome patients.


MethodsX ◽  
2020 ◽  
Vol 7 ◽  
pp. 101023
Author(s):  
Albert M. Isaacs ◽  
Rowland H. Han ◽  
Christopher D. Smyser ◽  
David D. Limbrick ◽  
Joshua S. Shimony

Sign in / Sign up

Export Citation Format

Share Document