Gutfreund, Prof. Herbert, (born 21 Oct. 1921), Professor of Physical Biochemistry, University of Bristol, 1972–86, now Emeritus; Scientific Member (external), Max-Planck-Institut für medizinische Forschung, Heidelberg, since 1987; Hon. Scientist, Rutherford Appleton Laboratory, Oxfordshire, 2001–09

Author(s):  
Douglass F. Taber

Andrey P. A ntonchick of the Max-Planck-Institut Dortmund devised (Org. Lett. 2012, 14, 5518) a protocol for the direct amination of an arene 1 to give the amide 3. Douglass A. Klumpp of Northern University showed (Tetrahedron Lett. 2012, 53, 4779) that under strong acid conditions, an arene 4 could be carboxylated to give the amide 6. Eiji Tayama of Niigata University coupled (Tetrahedron Lett. 2012, 53, 5159) an arene 7 with the α-diazo ester 8 to give 9. Guy C. Lloyd-Jones and Christopher A. Russell of the University of Bristol activated (Science 2012, 337, 1644) the aryl silane 11 to give an intermediate that coupled with the arene 10 to give 12. Ram A. Vishwakarma and Sandip P. Bharate of the Indian Institute of Integrative Medicine effected (Tetrahedron Lett. 2012, 53, 5958) ipso nitration of an areneboronic acid 13 to give 14. Stephen L. Buchwald of MIT coupled (J. Am. Chem. Soc. 2012, 134, 11132) sodium isocyanate with the aryl chloride 15 (aryl triflates also worked well) to give the isocyanate 16, which could be coupled with phenol to give the carbamate or carried onto the unsymmetrical urea. Zhengwu Shen of the Shanghai University of Traditional Chinese Medicine used (Org. Lett. 2012, 14, 3644) ethyl cyanoacetate 18 as the donor for the conversion of the aryl bromide 17 to the nitrile 19. Kuo Chu Hwang of the National Tsig Hua University showed (Adv. Synth. Catal. 2012, 354, 3421) that under the stimulation of blue LED light the Castro-Stephens coupling of 20 with 21 proceeded efficiently at room temperature. Lutz Ackermann of the Georg-August-Universität Göttingen employed (Org. Lett. 2012, 14, 4210) a Ru catalyst to oxidize the amide 23 to the phenol 24. Both Professor Ackermann (Org. Lett. 2012, 14, 6206) and Guangbin Dong of the University of Texas (Angew. Chem. Int. Ed. 2012, 51, 13075) described related work on the ortho hydroxylation of aryl ketones. George A. Kraus of Iowa State University rearranged (Tetrahedron Lett. 2012, 53, 7072) the aryl benzyl ether 25 to the phenol 26. The synthetic utility of the triazene 27 was demonstrated (Angew. Chem. Int. Ed. 2012, 51, 7242) by Yong Huang of the Shenzen Graduate School of Peking University.


Author(s):  
Tristan H. Lambert

Benjamin List at the Max-Planck-Institute in Mülheim reported (Angew. Chem. Int. Ed. 2013, 52, 3490) that the chiral phosphoric acid TRIP catalyzed the asymmet­ric SN2-type intramolecular etherification of 1 to produce tetrahydrofuran 2 with a selectivity factor of 82. The coupling of alkenol 3 with 4 to give the α-arylated tetra­hydropyran 5 via a method that combined gold catalysis and photoredox catalysis was disclosed (J. Am. Chem. Soc. 2013, 135, 5505) by Frank Glorius at Westfälische Wilhelms-Universität Münster. Mark Lautens at the University of Toronto reported (Org. Lett. 2013, 15, 1148) the conversion of cyclohexanedione 6 and phenylboronic acid to bicyclic ether 8 using rhodium catalysis in the presence of dienyl ligand 7. Propargylic ether 9 was found (Org. Lett. 2013, 15, 2926) by John P. Wolfe at the University of Michigan to undergo conversion to furanone 10 upon treatment with dibutylboron triflate and Hünig’s base followed by oxidation with hydrogen peroxide. Tomislav Rovis at Colorado State University demonstrated (Chem. Sci. 2013, 4, 1668) that the spirocyclic compound 13 could be prepared in enantioenriched form from 11 by a photoisomerization- coupled Stetter reaction using carbene catalyst 12. Antonio C. B. Burtoloso at the University of São Paulo reported (Org. Lett. 2013, 15, 2434) the conversion of ketone 14 to lactone 15 using samarium(II) iodide and methyl acrylate. The merger of diketone 16 and pyrone 17 in the presence of Amberlyst-15 to pro­duce (−)- tenuipyrone 18 was disclosed (Org. Lett. 2013, 15, 6) by Rongbiao Tong at the Hong Kong University of Science and Technology. Joanne E. Harvey at Victoria University of Wellington in New Zealand found (Org. Lett. 2013, 15, 2430) that tricy­clic ether 20 could be generated efficiently from dihydropyran 19 and pyrone 17 via a palladium-catalyzed double allylic alkylation cascade. Two rings and four stereocenters were generated in the construction of bicyclic ether 23 from dienol 21 and acetal 22 via a Lewis acid-mediated cascade, as reported (Org. Lett. 2013, 15, 2046) by Christine L. Willis at the University of Bristol.


Sign in / Sign up

Export Citation Format

Share Document