Ascorbate Oxidase, Protein Disulfide Isomerase, Ascorbic Acid, Dehydroascorbic Acid and Protein Levels in Developing Wheat Kernels and Their Relationship to Protein Disulfide Bond Formation

2003 ◽  
Vol 80 (1) ◽  
pp. 35-39 ◽  
Author(s):  
D. Every ◽  
W. B. Griffin ◽  
P. E. Wilson
2009 ◽  
Vol 425 (1) ◽  
pp. 195-208 ◽  
Author(s):  
Doris Roth ◽  
Emily Lynes ◽  
Jan Riemer ◽  
Henning G. Hansen ◽  
Nils Althaus ◽  
...  

The thiol-disulfide oxidoreductases of the PDI (protein disulfide isomerase) family assist in disulfide-bond formation in the ER (endoplasmic reticulum). In the present study, we have shown that the previously uncharacterized PDI family member TMX4 (thioredoxin-like transmembrane 4) is an N-glycosylated type I membrane protein that localizes to the ER. We also demonstrate that TMX4 contains a single ER-luminal thioredoxin-like domain, which, in contrast with similar domains in other PDIs, is mainly oxidized in living cells. The TMX4 transcript displays a wide tissue distribution, and is strongly expressed in melanoma cells. Unlike many type I membrane proteins, TMX4 lacks a typical C-terminal di-lysine retrieval signal. Instead, the cytoplasmic tail has a conserved di-arginine motif of the RXR type. We show that mutation of the RQR sequence in TMX4 to KQK interferes with ER localization of the protein. Moreover, whereas the cytoplasmic region of TMX4 confers ER localization to a reporter protein, the KQK mutant of the same protein redistributes to the cell surface. Overall, features not commonly found in other PDIs characterize TMX4 and suggest unique functional properties of the protein.


2001 ◽  
Vol 91 (6) ◽  
pp. 596-598 ◽  
Author(s):  
Takushi Harada ◽  
Eiji Kurimoto ◽  
Kenrou Tokuhiro ◽  
Osamu Asami ◽  
Tomoya Sakai ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 171
Author(s):  
Jiahui Fu ◽  
Jihui Gao ◽  
Zhongxin Liang ◽  
Dong Yang

Disulfide bonds play a pivotal role in maintaining the natural structures of proteins to ensure their performance of normal biological functions. Moreover, biological molecular assembly, such as the gluten network, is also largely dependent on the intermolecular crosslinking via disulfide bonds. In eukaryotes, the formation and rearrangement of most intra- and intermolecular disulfide bonds in the endoplasmic reticulum (ER) are mediated by protein disulfide isomerases (PDIs), which consist of multiple thioredoxin-like domains. These domains assist correct folding of proteins, as well as effectively prevent the aggregation of misfolded ones. Protein misfolding often leads to the formation of pathological protein aggregations that cause many diseases. On the other hand, glutenin aggregation and subsequent crosslinking are required for the formation of a rheologically dominating gluten network. Herein, the mechanism of PDI-regulated disulfide bond formation is important for understanding not only protein folding and associated diseases, but also the formation of functional biomolecular assembly. This review systematically illustrated the process of human protein disulfide isomerase (hPDI) mediated disulfide bond formation and complemented this with the current mechanism of wheat protein disulfide isomerase (wPDI) catalyzed formation of gluten networks.


Sign in / Sign up

Export Citation Format

Share Document