scholarly journals MST12 Regulates Infectious Growth But Not Appressorium Formation in the Rice Blast Fungus Magnaporthe grisea

2002 ◽  
Vol 15 (3) ◽  
pp. 183-192 ◽  
Author(s):  
Gyungsoon Park ◽  
Chaoyang Xue ◽  
Li Zheng ◽  
Stephen Lam ◽  
Jin-Rong Xu

In the rice blast fungus Magnaporthe grisea, a mitogen-activated protein kinase gene, PMK1, is known to regulate ap-pressorium formation and infectious hyphae growth. Since PMK1 is homologous to the FUS3 and KSS1 genes that regulate the transcription factor STE12 in yeast, we functionally characterized the STE12 homologue in M. grisea (MST12). A polymerase chain reaction-based approach was used to isolate the MST12 gene that is homologous to yeast STE12. Four mst12 deletion mutants were isolated by gene replacement. No obvious defect in vegetative growth, conidiation, or conidia germination was observed in mst12 mutants. However, mst12 mutants were nonpathogenic on rice and barley leaves. In contrast to pmk1 mutants that did not form appressoria, mst12 mutants produced typical dome-shaped and melanized appressoria. However, the ap-pressoria formed by mst12 mutants failed to penetrate onion epidermal cells. When inoculated through wound sites, mst12 mutants failed to cause spreading lesions and appeared to be defective in infectious growth. These data indicate that MST12 may function downstream of PMK1 to regulate genes involved in infectious hyphae growth. A transcription factor or factors other than MST12 must exist in M. grisea and function downstream from PMK1 for ap-pressorium formation.

2007 ◽  
Vol 64 (2) ◽  
pp. 293-307 ◽  
Author(s):  
Dominik Odenbach ◽  
Björn Breth ◽  
Eckhard Thines ◽  
Roland W. S. Weber ◽  
Heidrun Anke ◽  
...  

2007 ◽  
Vol 20 (5) ◽  
pp. 568-580 ◽  
Author(s):  
Pari Skamnioti ◽  
Catherine Henderson ◽  
Ziguo Zhang ◽  
Zena Robinson ◽  
Sarah Jane Gurr

Asexual spores of the rice blast fungus germinate to produce a specialized and melanized infection structure, the appressorium, which is pivotal to successful plant penetration. To investigate whether Magnaporthe grisea counteracts the toxic burst of H2O2 localized beneath the site of attempted invasion, we examined the temporal expression of five candidate antioxidant genes. Of these, the putatively secreted large subunit catalase CATB gene was 600-fold up-regulated in vivo, coincident with penetration, and moderately up-regulated in vitro, in response to exogenous H2O2. Targeted gene replacement of CATB led to compromised pathogen fitness; the catB mutant displayed paler pigmentation and accelerated hyphal growth but lower biomass, poorer sporulation, fragile conidia and appressoria, and impaired melanization. The catB mutant was severely less pathogenic than Guy 11 on barley and rice, and its infectivity was further reduced on exposure to H2O2. The wild-type phenotype was restored by the reintroduction of CATB into the catB mutant. We found no evidence to support a role for CATB in detoxification of the host-derived H2O2 at the site of penetration. Instead, we demonstrated that CATB plays a part in strengthening the fungal wall, a role of particular importance during forceful entry into the host.


2011 ◽  
Vol 2011 (31) ◽  
pp. 6276-6280 ◽  
Author(s):  
Koji Tanaka ◽  
Ayaka Sasaki ◽  
Hai-Qun Cao ◽  
Teiko Yamada ◽  
Masahiro Igarashi ◽  
...  

PROTEOMICS ◽  
2004 ◽  
Vol 4 (11) ◽  
pp. 3579-3587 ◽  
Author(s):  
Sun Tae Kim ◽  
Seok Yu ◽  
Sang Gon Kim ◽  
Han Ju Kim ◽  
Sun Young Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document