fungal cell
Recently Published Documents


TOTAL DOCUMENTS

1066
(FIVE YEARS 387)

H-INDEX

79
(FIVE YEARS 11)

Author(s):  
Timothy C. Cairns ◽  
Xiaomei Zheng ◽  
Claudia Feurstein ◽  
Ping Zheng ◽  
Jibin Sun ◽  
...  

Submerged fermentation using filamentous fungal cell factories is used to produce a diverse portfolio of useful molecules, including food, medicines, enzymes, and platform chemicals. Depending on strain background and abiotic culture conditions, different macromorphologies are formed during fermentation, ranging from dispersed hyphal fragments to approximately spherical pellets several millimetres in diameter. These macromorphologies are known to have a critical impact on product titres and rheological performance of the bioreactor. Pilot productivity screens in different macromorphological contexts is technically challenging, time consuming, and thus a significant limitation to achieving maximum product titres. To address this bottleneck, we developed a library of conditional expression mutants in the organic, protein, and secondary metabolite cell factory Aspergillus niger. Thirteen morphology-associated genes transcribed during fermentation were placed via CRISPR-Cas9 under control of a synthetic Tet-on gene switch. Quantitative analysis of submerged growth reveals that these strains have distinct and titratable macromorphologies for use as chassis during strain engineering programs. We also used this library as a tool to quantify how pellet formation is connected with strain fitness and filamentous growth. Using multiple linear regression modelling, we predict that pellet formation is dependent largely on strain fitness, whereas pellet Euclidian parameters depend on fitness and hyphal branching. Finally, we have shown that conditional expression of the putative kinase encoding gene pkh2 can decouple fitness, dry weight, pellet macromorphology, and culture heterogeneity. We hypothesize that further analysis of this gene product and the cell wall integrity pathway in which it is embedded will enable more precise engineering of A. niger macromorphology in future.


2022 ◽  
Author(s):  
Yu Zhang ◽  
Mengyan Li ◽  
Hanying Wang ◽  
Juqing Deng ◽  
Jianxing Liu ◽  
...  

Abstract The mechanism of fungal cell wall synthesis and assembly is still unclear. Saccharomyces cerevisiae (S. cerevisiae) and pathogenic fungi are conserved in cell wall construction and response to stress signals, and often respond to cell wall stress through activated cell wall integrity (CWI) pathways. Whether the YLR358C open reading frame regulates CWI remains unclear. This study found that the growth of S. cerevisiae with YLR358C knockout was significantly inhibited on the medium containing different concentrations of cell wall interfering agents Calcofluor White (CFW), Congo Red (CR) and sodium dodecyl sulfate (SDS). CFW staining showed that the cell wall chitin was down-regulated, and transmission electron microscopy also observed a decrease in cell wall thickness. Transcriptome sequencing and analysis showed that YLR358C gene may be involved in the regulation of CWI signaling pathway. It was found by qRT-PCR that WSC3, SWI4 and HSP12 were differentially expressed after YLR358C was knocked out. The above results suggest that YLR358C may regulate the integrity of the yeast cell walls and has some potential for application in fermentation.


Author(s):  
Karen Kubo ◽  
Kaori Itto-Nakama ◽  
Shinsuke Ohnuki ◽  
Yoko Yashiroda ◽  
Sheena C. Li ◽  
...  

Non- Candida albicans Candida species (NCAC) are on the rise as a cause of mycosis. Many antifungal drugs are less effective against NCAC, limiting the available therapeutic agents.


2022 ◽  
Author(s):  
Qing Xiong ◽  
Angel Tsz-Yau Wan ◽  
Xiao-Yu Liu ◽  
Cathy Sin-Hang Fung ◽  
Xiaojun Xiao ◽  
...  

Abstract Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing roughly 1–2% of the allergic diseases globally; however, their evolutionary origin, diverse lifestyles including reversible parasitism and quick adaptation to rather new human household environments have not been illustrated at genomic level, which hamper the allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this comparative genomics study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the divergent evolution of astigmatic mites. In the monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases (UGTs), which enriched their capacities of adapting to rapidly changing household environments. The gene diversification after tandem duplications provided plenty of genetic resources for their adaptations of sensing environmental signals, digestion, and detoxification. Whilst many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UGTs and several important fungal cell wall lytic enzymes, which enable the detoxification and associated digestive functions and provide perfect drug targets for pest control. Our comparative study sheds light on the rapid divergent evolution of astigmatic mites from the divergence of Acariformes to their diversification and provides novel insights into the genetic adaptations and even control of human household pests.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 189
Author(s):  
Seham A. Soliman ◽  
Elsayed Hafez ◽  
Abdu M. G. ALKolaibe ◽  
El-Sayed S. Abdel Razik ◽  
Sawsan Abd-Ellatif ◽  
...  

Tomato (Lycopersicon esculentum Mill.) is important food in daily human diets. Root rot disease by Fusarium oxysporum caused huge losses in tomato quality and yield annually. The extensive use of synthetic and chemical fungicides has environmental risks and health problems. Recent studies have pointed out the use of medicinal plant essential oils (EOs) and extracts for controlling fungal diseases. In the current research, Mentha spicata and Mentha longifolia EOs were used in different concentrations to control F. oxysporum. Many active compounds are present in these two EOs such as: thymol, adapic acid, menthol and menthyl acetate. These compounds possess antifungal effect through malformation and degradation of the fungal cell wall. The relative expression levels of distinctly upregulated defense-related WRKY genes (WRKY1, WRKY4, WRKY33 and WRKY53) in seedling root were evaluated as a plant-specific transcription factor (TF) group in different response pathways of abiotic stress. Results showed significant expression levels of WRKY, WRKY53, WRKY33, WRKY1 and WRKY4 genes. An upregulation was observed in defense-related genes such as chitinase and defensin in roots by application EOs under pathogen condition. In conclusion, M. spicata and M. longifolia EOs can be used effectively to control this plant pathogen as sustainable and eco-friendly botanical fungicides.


2022 ◽  
Vol 12 ◽  
Author(s):  
Irshad Ahamad ◽  
Fareha Bano ◽  
Razique Anwer ◽  
Pooja Srivastava ◽  
Raj Kumar ◽  
...  

Biofilms are microbial colonies that are encased in an organic polymeric matrix and are resistant to antimicrobial treatments. Biofilms can adhere to both biotic and abiotic surfaces, allowing them to colonize medical equipment such as urinary and intravenous catheters, mechanical heart valves, endotracheal tubes, and prosthetic joints. Candida albicans biofilm is the major etiological cause of the pathogenesis of candidiasis in which its unobstructed growth occurs in the oral cavity; trachea, and catheters that progress to systemic infections in the worst scenarios. There is an urgent need to discover novel biofilm preventive and curative agents. In the present investigation, an effort is made to observe the role of cyanobacteria-derived AgNPs as a new antibiofilm agent with special reference to candidiasis. AgNPs synthesized through the green route using Anabaena variabilis cell extract were characterized by UV–visible spectroscopy. The nanoparticles were spherical in shape with 11–15 nm size and were monodispersed. The minimum inhibitory concentration (MIC) of AgNPs was obtained at 12.5 μg/mL against C. albicans. AgNPs 25 μg/mL showed 79% fungal cell membrane permeability and 22.2% ROS production. AgNPs (25 μg/mL) also facilitated 62.5% of biofilm inhibition and degradation. Therefore, AgNPs could be considered as a promising antifungal agent to control biofilm produced by C. albicans.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010192
Author(s):  
Mengli Yang ◽  
Norma V. Solis ◽  
Michaela Marshall ◽  
Rachel Garleb ◽  
Tingting Zhou ◽  
...  

Candida albicans is a major opportunistic pathogen of humans. It can grow as morphologically distinct yeast, pseudohyphae and hyphae, and the ability to switch reversibly among different forms is critical for its virulence. The relationship between morphogenesis and innate immune recognition is not quite clear. Dectin-1 is a major C-type lectin receptor that recognizes β-glucan in the fungal cell wall. C. albicans β-glucan is usually masked by the outer mannan layer of the cell wall. Whether and how β-glucan masking is differentially regulated during hyphal morphogenesis is not fully understood. Here we show that the endo-1,3-glucanase Eng1 is differentially expressed in yeast, and together with Yeast Wall Protein 1 (Ywp1), regulates β-glucan exposure and Dectin-1-dependent immune activation of macrophage by yeast cells. ENG1 deletion results in enhanced Dectin-1 binding at the septa of yeast cells; while eng1 ywp1 yeast cells show strong overall Dectin-1 binding similar to hyphae of wild-type and eng1 mutants. Correlatively, hyphae of wild-type and eng1 induced similar levels of cytokines in macrophage. ENG1 expression and Eng1-mediated β-glucan trimming are also regulated by antifungal drugs, lactate and N-acetylglucosamine. Deletion of ENG1 modulates virulence in the mouse model of hematogenously disseminated candidiasis in a Dectin-1-dependent manner. The eng1 mutant exhibited attenuated lethality in male mice, but enhanced lethality in female mice, which was associated with a stronger renal immune response and lower fungal burden. Thus, Eng1-regulated β-glucan exposure in yeast cells modulates the balance between immune protection and immunopathogenesis during disseminated candidiasis.


2022 ◽  
Vol 23 (1) ◽  
pp. 545
Author(s):  
Tania Vanzolini ◽  
Michela Bruschi ◽  
Andrea C. Rinaldi ◽  
Mauro Magnani ◽  
Alessandra Fraternale

Despite the great strides in healthcare during the last century, some challenges still remained unanswered. The development of multi-drug resistant bacteria, the alarming growth of fungal infections, the emerging/re-emerging of viral diseases are yet a worldwide threat. Since the discovery of natural antimicrobial peptides able to broadly hit several pathogens, peptide-based therapeutics have been under the lenses of the researchers. This review aims to focus on synthetic peptides and elucidate their multifaceted mechanisms of action as antiviral, antibacterial and antifungal agents. Antimicrobial peptides generally affect highly preserved structures, e.g., the phospholipid membrane via pore formation or other constitutive targets like peptidoglycans in Gram-negative and Gram-positive bacteria, and glucan in the fungal cell wall. Additionally, some peptides are particularly active on biofilm destabilizing the microbial communities. They can also act intracellularly, e.g., on protein biosynthesis or DNA replication. Their intracellular properties are extended upon viral infection since peptides can influence several steps along the virus life cycle starting from viral receptor-cell interaction to the budding. Besides their mode of action, improvements in manufacturing to increase their half-life and performances are also taken into consideration together with advantages and impairments in the clinical usage. Thus far, the progress of new synthetic peptide-based approaches is making them a promising tool to counteract emerging infections.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hamid Rouina ◽  
Yu-Heng Tseng ◽  
Karaba N. Nataraja ◽  
Ramanan Uma Shaanker ◽  
Thomas Krüger ◽  
...  

Numerous Trichoderma strains are beneficial for plants, promote their growth, and confer stress tolerance. A recently described novel Trichoderma strain strongly promotes the growth of Arabidopsis thaliana seedlings on media with 50 mM NaCl, while 150 mM NaCl strongly stimulated root colonization and induced salt-stress tolerance in the host without growth promotion. To understand the dynamics of plant-fungus interaction, we examined the secretome from both sides and revealed a substantial change under different salt regimes, and during co-cultivation. Stress-related proteins, such as a fungal cysteine-rich Kp4 domain-containing protein which inhibits plant cell growth, fungal WSC- and CFEM-domain-containing proteins, the plant calreticulin, and cell-wall modifying enzymes, disappear when the two symbionts are co-cultured under high salt concentrations. In contrast, the number of lytic polysaccharide monooxygenases increases, which indicates that the fungus degrades more plant lignocellulose under salt stress and its lifestyle becomes more saprophytic. Several plant proteins involved in plant and fungal cell wall modifications and root colonization are only found in the co-cultures under salt stress, while the number of plant antioxidant proteins decreased. We identified symbiosis- and salt concentration-specific proteins for both partners. The Arabidopsis PYK10 and a fungal prenylcysteine lyase are only found in the co-culture which promoted plant growth. The comparative analysis of the secretomes supports antioxidant enzyme assays and suggests that both partners profit from the interaction under salt stress but have to invest more in balancing the symbiosis. We discuss the role of the identified stage- and symbiosis-specific fungal and plant proteins for salt stress, and conditions promoting root colonization and plant growth.


Author(s):  
S. I. Makarova ◽  
D. V. Mitrofanov ◽  
A. B. Shintyapina ◽  
E. G. Komova ◽  
V. V. Zelenskaya ◽  
...  

High prevalence of bronchial asthma among the population (about 300 million people all over the world) provides rationale for the search for candidate genes of disease. Human acidic chitinase (CHIA (AMCase)), encoded by the CHIA gene, is involved in the degradation of chitin, a component of the fungal cell wall and arthropod exoskeleton, which, if present in food or house dust, is a provoking factor for the bronchial asthma (BA) development. Functionally significant mutations in the CHIA gene may apparently increase the risk of susceptibility to BA.Aim. The aim of the study was to assess the associations of single nucleotide polymorphisms (SNPs) rs12033184 and rs3806448 in the CHIA gene with bronchial asthma in children in Novosibirsk.Material and Methods. The study was organized as case-control. A total of 537 blood samples were used. SNPs were determined by real-time PCR. The associations of polymorphic variants with the disease were assessed by the odds ratio.Results. No associations of rs12033184 and rs3806448 with BA were found.Conclusion. The role of acidic chitinase gene in the development of BA in residents of Novosibirsk was found to be less significant than in the Indian population where it was previously shown to be associated with the disease.


Sign in / Sign up

Export Citation Format

Share Document