Rhizoctonia Root Rot of Small Grains Favored by Reduced Tillage in the Pacific Northwest

Plant Disease ◽  
1986 ◽  
Vol 70 (1) ◽  
pp. 70 ◽  
Author(s):  
D. M. Weller
Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 304-310 ◽  
Author(s):  
E. M. Babiker ◽  
S. H. Hulbert ◽  
K. L. Schroeder ◽  
T. C. Paulitz

Rhizoctonia root rot, caused by Rhizoctonia solani AG-8 and R. oryzae, is considered one of the main deterrents for farmers to adopt reduced-tillage systems in the Pacific Northwest. Because of the wide host range of Rhizoctonia spp., herbicide application before planting to control weeds and volunteer plants is the main management strategy for this disease. To determine the effect of timing of glyphosate applications on the severity of Rhizoctonia root rot of barley, field experiments were conducted in 2007, 2008, and 2009 in a field naturally infested with a high level of both R. solani and R. oryzae. Crop volunteer plants and weeds were allowed to grow over the winter and plots were sprayed with glyphosate at 42, 28, 14, 7, and 2 days prior to planting. As the herbicide application interval increased, there were significant increases in shoot length, length of the first true leaf, and number of healthy seminal roots and a decrease in disease severity. Yield and the number of seminal roots did not show a response to herbicide application interval in most years. The activity of R. solani, as measured by toothpick bioassay and real-time polymerase chain reaction, declined over time in all treatments after planting barley. The herbicide application interval required to meet 80 and 90% of the maximum response (asymptote) for all plant and disease measurements ranged from 11 to 27 days and 13 to 37 days, respectively. These times are the minimum herbicide application intervals required to reduce disease severity in the following crop.


2016 ◽  
Vol 106 (10) ◽  
pp. 1170-1176 ◽  
Author(s):  
A. K. Mahoney ◽  
E. M. Babiker ◽  
T. C. Paulitz ◽  
D. See ◽  
P. A. Okubara ◽  
...  

Root rot caused by Rhizoctonia spp. is an economically important soilborne disease of spring-planted wheat in growing regions of the Pacific Northwest (PNW). The main method of controlling the disease currently is through tillage, which deters farmers from adopting the benefits of minimal tillage. Genetic resistance to this disease would provide an economic and environmentally sustainable resource for farmers. In this study, a collection of synthetic-derived genotypes was screened in high-inoculum and low-inoculum field environments. Six genotypes were found to have varying levels of resistance and tolerance to Rhizoctonia root rot. One of the lines, SPBC-3104 (‘Vorobey’), exhibited good tolerance in the field and was crossed to susceptible PNW-adapted ‘Louise’ to examine the inheritance of the trait. A population of 190 BC1-derived recombinant inbred lines was assessed in two field green bridge environments and in soils artificially infested with Rhizoctonia solani AG8. Genotyping by sequencing and composite interval mapping identified three quantitative trait loci (QTL) controlling tolerance. Beneficial alleles of all three QTL were contributed by the synthetic-derived genotype SPCB-3104.


Plant Disease ◽  
2016 ◽  
Vol 100 (3) ◽  
pp. 640-644
Author(s):  
Patricia A. Okubara ◽  
Natalie Leston ◽  
Ute Micknass ◽  
Karl-Heinz Kogel ◽  
Jafargholi Imani

Rhizoctonia solani AG8, causal agent of Rhizoctonia root rot and bare patch in dryland cereal production systems of the Pacific Northwest United States and Australia, reduces yields in a wide range of crops. Disease is not consistently controlled by available management practices, so genetic resistance would be a desirable resource for growers. In this report, we describe three rapid and low-cost assays for R. solani AG8 resistance in wheat and barley, with the view of facilitating screens for genetic resistance in these hosts. The first assay uses 50-ml conical centrifuge tubes containing soil infested with R. solani AG8 on a substrate of ground oats. The second assay uses roots of 3-day-old seedlings directly coated with infested ground oats, followed by incubation in plastic dishes. The third assay, suitable for barley, uses whole infested oat kernels in 50-ml tubes. Symptoms are quantified on the bases of root fresh weight and total root length at 7 and 3 days for the tube and coating assays, respectively. Each of the assays show the same disease differential between susceptible and partially resistant wheat genotypes. The assays can be conducted in the laboratory, growth chamber, or greenhouse.


2019 ◽  
Vol 39 (4) ◽  
pp. 452
Author(s):  
Margaret H. Massie ◽  
Todd M. Wilson ◽  
Anita T. Morzillo ◽  
Emilie B. Henderson

Sign in / Sign up

Export Citation Format

Share Document