First Report of Dollar Spot Caused by Clarireedia jacksonii and Brown Ring Patch Caused by Waitea circinata var. circinata on Agrostis stolonifera in Spain

Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1771-1771
Author(s):  
D. Gómez de Barreda ◽  
V. De Luca ◽  
A. Ramón-Albalat ◽  
M. León ◽  
J. Armengol
Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 161-161 ◽  
Author(s):  
T. Hsiang ◽  
F. Shi ◽  
A. Darbyson

Sclerotinia homoeocarpa is a fungal pathogen that causes dollar spot disease on more than 40 plant species, mostly in the family Poaceae (1), and is considered the most widespread pathogen of golf course turfgrasses in the St. Lawrence River Region. In June 2011, lesions were observed on tufted bulrush, Trichophorum cespitosum (Poales, Cyperaceae), on the sea shore near Peggys Cove, Nova Scotia, Canada. Single bunches had up to 40% of the leaves affected. The foliar symptoms resembled large hourglass lesions, up to 5 cm long, with a straw colored portion capped at two ends by dark zone lines on surrounding green foliar tissue. Leaf segments were taken, surface sterilized, and placed on potato dextrose agar (PDA). After 3 days of incubation at room temperature, white fluffy mycelia covered the entire petri dish. Brown columnar structures formed in the colony centers after 7 days and cultures became cinnamon colored after 14 days. Dark brown or black substratal stroma were formed on or in the agar, and cultures appeared dark brown from the bottom. DNA was extracted and amplified using primers ITS1 and ITS4 (2), and the amplicon sequenced (GenBank Accession No. KF447776). The sequence showed a top match of 522/524 bp identity with the ITS of an isolate of S. homoeocarpa, with the next 40 top matches also identified as S. homoeocarpa. Two-week-old seedlings of Agrostis stolonifera cv. Penncross, Poa pratensis cv. Touchdown, and Lolium perenne cv. Express were inoculated by placing 5-mm-diameter mycelial plugs from 5-day-old PDA cultures onto the leaves of plants grown in small containers, and incubating under enclosed humid conditions throughout the test. White aerial hyphae on the leaves and straw-colored leaf lesions were observed by 7 days after inoculation on P. pratensis and L. perenne, but no lesions or hyphal growth were observed on A. stolonifera. No signs or symptoms were observed on leaves where sterile agar plugs were used as inoculum. These tests were repeated three times with the same results, and a positive control was included by using an S. homoeocarpa isolate known to be pathogenic to A. stolonifera under the same test conditions. Disease was observed on A. stolonifera with the control isolate. S. homoeocarpa was re-isolated from the lesions on P. pratensis and L. perenne to satisfy Koch's postulates. To the best of our knowledge, this is the first report of S. homoeocarpa on T. cespitosum worldwide, an isolate that was found to cause disease on P. pratensis and L. perenne, but was not pathogenic to A. stolonifera in vitro. The original host was not used in pathogenicity tests because it is considered an endangered species in many locations. References: (1) B. Walsh et al. HortScience 34:13, 1999. (2) T. J. White et al. PCR protocols, a guide to methods and applications 18:315, 1990.


Crop Science ◽  
2017 ◽  
Vol 57 (S1) ◽  
Author(s):  
Tatsiana Espevig ◽  
May Bente Brurberg ◽  
Marina Usoltseva ◽  
Åslög Dahl ◽  
Agnar Kvalbein ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 78-78 ◽  
Author(s):  
E. N. Njambere ◽  
B. B. Clarke ◽  
S. A. Bonos ◽  
J. A. Murphy ◽  
R. Buckley ◽  
...  

Waitea circinata var. circinata was first reported as the causal agent of brown ring patch on annual bluegrass (Poa annua L.) in the United States in 2007 (2). In early April to mid-June of 2009, circular to irregularly shaped yellow rings resembling symptoms of this disease were observed on an annual bluegrass putting green at Rutgers University in North Brunswick, NJ. Severely infected foliage eventually turned brown as the disease progressed. During the same time period, similar disease symptoms were observed on creeping bentgrass (Agrostis stolonifera L.) from a golf course in Bedminster Township, NJ. The disease reappeared in both locations in April of 2010. Five additional samples with similar symptoms on creeping bentgrass and annual bluegrass were received at Rutgers Diagnostic Laboratory from Paramus, Madison, Allamuchy, and Farmingdale, NJ between late April and early May of 2010. Portions of diseased leaf and sheath tissue that displayed symptoms of the disease were disinfested for 1 min in 0.5% NaOCl, rinsed with sterile distilled water, and plated on potato dextrose agar (PDA) amended with 50 mg/liter of streptomycin sulfate. At the first sign of fungal growth, single hyphal tips were transferred to PDA. After 1 week at 25°C, white-to-orange mycelial colonies formed in culture and eventually turned brown with age. Minute sclerotia (≤3 mm), which followed the same color development pattern, formed within 10 days. These features are consistent with those described of W. circinata var. circinata (2,3). The internal transcribed spacer (ITS) region of the ribosomal RNA gene was amplified using primer pair ITS1/ITS4 and sequenced with ITS4 (GenBank Accession Nos. HQ166065 to HQ166071). BLASTn analysis of the ITS sequences showed a 99 to 100% similarity to W. circinata var. circinata sequences deposited in GenBank (1,2). Pathogenicity tests were conducted in 2010 using 6-week-old creeping bentgrass seedlings cv. Declaration inoculated with colonized oat grain that had been autoclaved and then infested with the Bedminster Township isolate. Eight colonized oat grains were uniformly spread around the crowns of seedlings grown in 10-cm-diameter pots. Control plants were treated with autoclaved grain. Plants were incubated at 25°C and high humidity maintained by misting the plants three times per day. Within 3 days postinoculation, foliage near infested grain turned chlorotic. All foliage in pots became completely blighted and spherical orange-brown sclerotia were observed on leaf sheaths by the eighth day. W. circinata var. circinata was consistently reisolated from inoculated plants (as confirmed by isolate morphology and ITS sequencing) but not from control plants. The ITS sequence data, morphological characters of the isolates, and pathogenicity tests demonstrate that W. circinata var. circinata is present in New Jersey. To our knowledge, this is the first report of W. circinata var. circinata infecting turfgrass in New Jersey. References: (1) C. M. Chen et al. Plant Dis. 93:906, 2009. (2) K. A. de la Cerda et al. Plant Dis. 91:791, 2007. (3) T. Toda et al. Plant Dis. 89:536, 2005.


Plant Disease ◽  
2004 ◽  
Vol 88 (12) ◽  
pp. 1384-1384 ◽  
Author(s):  
M. C. Rivera ◽  
E. R. Wright ◽  
L. V. Goldring ◽  
B. A. Pérez ◽  
D. Barreto

During the summer of 2000, circular, yellow-to-brown, blighted, 2- to 4-cm-diameter patches were observed on creeping bentgrass (Agrostis stolonifera) putting greens (cv. Pennlinks) maintained at a 4- to 5-mm height on a golf course in Pilar (Buenos Aires, Argentina). Symptomatic leaves had transverse chlorotic bands that sometimes extended to the tip with brown lesions inside the bands. A fungus was isolated from symptomatic tissue after surface sterilization with 2% bleach for 1 min and plating on 2% potato dextrose agar (PDA). The mycelium was fluffy and white. The culture turned olive to brown and developed black stromata on the lower side of the plate base after 2 weeks. Pathogenicity tests were performed on 2-month-old healthy plants of A. stolonifera (cv. Crenshaw) grown in sterilized sand. Recently cut, 14-mm-diameter plugs of A. stolonifera were placed in 22- × 17-cm plastic trays filled with a sterilized mixture of 50:50 soil/sand (vol/vol). Plants were maintained at a 7-mm height. Two sources of inoculum were prepared; one was cultured on PDA at 22 to 25°C for 10 days and the other was prepared by incubating in sterilized soil at room temperature for 14 days. Twenty pieces of 1-cm-diameter agar blocks containing mycelium were placed in each plug at the base of the plants. In the infested soil inoculation, 25 g of soil were distributed among the plants on the substrate surface. Control plants were treated with either sterile PDA pieces or noninfested soil. The trays were irrigated with sterilized distilled water, covered with polyethylene bags, and kept in a controlled environment chamber at 25°C with 12 h per day of fluorescent light for 30 days. Leaf chlorosis appeared 7 and 10 days after inoculation for the agar-plug and infested-soil methods, respectively. Leaf necrosis was observed at day 23. Controls remained asymptomatic. The inoculated fungus was reisolated from symptomatic leaf tissue. The pathogen was identified as Sclerotinia homoeocarpa (1,2). To our knowledge, this is the first report of Sclerotinia homoeocarpa causing dollar spot disease on Agrostis stolonifera in Argentina and the first report of a disease on golf courses in our country. References: (1) J. E. M. Mordue. Sclerotinia homoeocarpa. No. 618 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1979. (2) R. W. Smiley. Dollar Spot. Pages 14–16 in: Compendium of Turfgrass Diseases. The American Phytopathological Society, St. Paul, MN, 1983.


Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1821-1821 ◽  
Author(s):  
X. X. Ni ◽  
B. T. Li ◽  
M. Cai ◽  
X. L. Liu

Brown ring patch, caused by Waitea circinata var. circinata, is a recently described disease of turf grass (1,2). The disease was first reported in Japan in 2005 (2) and then in the United States (1). In late May to early September 2011, large yellow rings (20 to 30 cm in diameter) were observed on creeping bentgrass (Agrostis stolonifera) and Kentucky bluegrass (Poa pratensis) growing at the Qinghe Bay golf course, Beijing, China. Leaf blades turned from yellow to brown as the disease developed, and eventually died. The disease incidence was estimated at 20 to 30%. The rings became continuous on creeping bentgrass and Kentucky bluegrass in several putting greens. The same symptom was observed on the lawn of China Agricultural University. Symptomatic leaves were collected and incubated in high humidity at 25°C until mycelia developed. The leaves were then disinfested in 1% NaClO for 1 min, rinsed with sterile water three times, and placed on potato dextrose agar (PDA). Four isolates were obtained, including one isolate from the lawn of China Agricultural University (cau-1), and three from Qinghe Bay golf course (qhw-1, qhw-2, and qhw-3). The colonies that formed on PDA changed from white to orange over time, and minute orange to brown sclerotia (approx. 2 to 3 mm in diameter) formed after 2 weeks at 25°C. These characteristics were similar to W. circinata var. circinata (1,2). DNA was extracted from each isolate using a CTAB extraction method (3) and the internal transcribed spacer (ITS) regions were amplified with the ITS1/ITS4 universal primers. The ITS sequences of the isolated fungi (Accession Nos. JQ964235 and JQ964236) had 99 to 100% homology with the sequences of W. circinata in GenBank (Accession Nos. EU591763 and HQ207169). Pathogen inocula were prepared by inoculating autoclaved oat grains with strains qhw-1 and cau-1 respectively, followed by 4 days of incubation at 25°C. Each inoculum was placed in five spots in a uniform arrangement (5 g grain inoculum per spot) on soil in a 40 × 60 cm tray, followed by sowing bluegrass seed. In another experiment, 4-week-old bentgrass was transplanted into soil infested with 5 g grain inoculum in the middle of a 20-cm diameter pot (non-colonized grain was used as a control). There were five replicates for each isolate. Plants were then incubated in a growth chamber at 26°C and high relative humidity (>90%). After 5 to 6 days, the grass in the inoculated pots and trays began to turn yellow, and then became chlorotic and necrotic as the disease developed. Orange sclerotia were observed on the bluegrass leaves by the eighth day, and all the bentgrass turned chlorotic by the tenth day. After 2 weeks, brown ring patches formed in the trays with inoculated bluegrass. Waitea circinata var. circinata was reisolated from all inoculated plants and confirmed by morphological observation and the ITS sequences analysis as described above, while no symptoms were observed on the control plants and no isolate was obtained from them. To our knowledge, this is the first report of W. circinata var. circinata infecting turf grass in China. References: (1) K. A. De La Cerda et al. Plant Dis. 91:791, 2007. (2) T. Toda et al. Plant Dis. 89:536, 2005. (3) J. A. H. Van Burik et al. Med. Mycol. 36:299, 1998.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1160-1160
Author(s):  
F. Flores ◽  
N. R. Walker

Sandbur (Cenchrus incertus Curtis) is a warm-season, annual, noxious, grassy weed native to southern North America. It is common in sandy, disturbed soils and can also be found in home lawns and sport fields where low turf density facilitates its establishment. In July 2013, after a period of frequent rainfall and heavy dew, symptoms of dollar spot-like lesions (1) were observed on sandbur plants growing in a mixed stand of turf-type and native warm-season grasses in Logan County, Oklahoma. Lesions, frequently associated with leaf sheaths, were tan and surrounded by a dark margin. Symptomatic leaves were surface sterilized and plated on potato dextrose agar amended with 10 ppm rifampicin, 250 ppm ampicillin, and 5 ppm fenpropathrin. After incubation, a fungus morphologically identical to Sclerotinia homoeocarpa Bennett was consistently isolated. The nuclear ribosomal internal transcribed spacer (ITS) region of two different isolates, SCL2 and SCL3, were amplified using primers ITS4 and ITS5 (2). The DNA products were sequenced and BLAST analyses were used to compare sequences with those in GenBank. The sequence for isolate SLC2 was 869 bp, contained a type I intron in the 18S small subunit rDNA, and was identical to accession EU123803. The ITS sequence for isolate SLC3 was 535 bp and identical to accession EU123802. Twenty-five-day-old seedlings of C. incertus were inoculated by placing 5-mm-diameter agar plugs, colonized by mycelia of each S. homoeocarpa isolate, onto two of the plants' leaves. Plugs were held in place with Parafilm. Two plants were inoculated with each isolate and sterile agar plugs were placed on two leaves of another seedling as control. Plants were incubated in a dew chamber at 20°C and a 12-h photoperiod. After 3 days of incubation, water-soaked lesions surrounded by a dark margin appeared on inoculated plants only. Fungi that were later identified as S. homoeocarpa isolates SLC2 and SLC3 by sequencing of the ITS region were re-isolated from symptomatic leaves, fulfilling Koch's postulates. To our knowledge, this is the first report of dollar spot on sandbur. References: (1) R. W. Smiley et al. Page 22 in: Compendium of Turfgrass Diseases. 3rd ed. The American Phytopathological Society, St. Paul, MN, 2005. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 292-292 ◽  
Author(s):  
L. Coelho ◽  
C. Borrero ◽  
F. Bueno-Pallero ◽  
C. Guerrero ◽  
F. Fonseca ◽  
...  

Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1433-1442 ◽  
Author(s):  
Alexander I. Putman ◽  
John E. Kaminski

Management of dollar spot (incited by Sclerotinia homoeocarpa) on golf course fairways is increasingly challenging. The objectives of this study were to determine the influence of mowing frequency and plant growth regulators (PGRs) on dollar spot severity and on the residual efficacy of fungicides for control of dollar spot. Two 4-month-long studies were conducted on ‘Putter’ creeping bentgrass (Agrostis stolonifera) maintained as a fairway at the University of Connecticut. Treatments were arranged in a three-by-three-by-five factorial that assessed the influence of mowing frequency (2, 4, or 6 days week–1) and PGRs (paclobutrazol, trinexapac-ethyl, or none) on dollar spot control by five fungicide treatments (boscalid, chlorothalonil, iprodione, propiconazole, or none). Turf was mowed in the afternoon hours to minimize the confounding effect of mowing frequency on leaf wetness duration. Treatments were initiated in the late spring of 2007 and 2008, and each fungicide treatment was reapplied only when dollar spot exceeded a threshold of five infection centers plot–1. In the absence of fungicides, dollar spot severity was reduced by 63 to 90% in plots treated with paclobutrazol and by 13 to 55% in plots treated with trinexapac-ethyl. Dollar spot severity was 23 to 50% lower in plots mown 2 days week–1 compared with those mown 6 days week–1. In cases where a significant interaction was observed between mowing frequency and PGRs, dollar spot was reduced on most rating dates in plots treated with trinexapacethyl that were mown 2 days week–1 compared with those mown 6 days week–1. Survival analysis of days until threshold was met revealed that duration of control of fungicides in plots receiving paclobutrazol were 28 to 84% longer compared with plots not receiving PGR. Duration of control by fungicides was generally similar between plots treated with trinexapac-ethyl and no PGR. In general, mowing frequency did not influence duration of control. Results from this study indicate that paclobutrazol could be used to increase the treatment interval of fungicides and that mowing frequency in the absence of dew is likely to have little influence on fungicide residual efficacy. When used without fungicides, PGRs and less frequent mowing may reduce dollar spot in situations where fungicide use is limited.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1249-1249 ◽  
Author(s):  
S. M. Marek ◽  
I. R. Moncrief ◽  
N. R. Walker

Buffalograss (Buchloe dactyloides (Nutt.) Engelm.) is a perennial, warm-season grass native to the central plains of North America and a dominant plant over much of the shortgrass prairie ecosystem. Its prostrate growth habit and excellent drought tolerance make it a commercially promising turfgrass species, and numerous turf-type cultivars have been released. In the spring of 2007, the southern plains states experienced prolonged periods of excessive precipitation during which numerous buffalograss swards throughout north-central Oklahoma exhibited symptoms of dollar spot (1). A fungus morphologically identical to Sclerotinia homoeocarpa Bennett was consistently isolated from diseased buffalograss leaves collected from three locations in Oklahoma, two from Payne County and one from Logan County. Thirty-day-old seedlings of B. dactyloides (‘Cody’ and ‘Topgun’) and Agrostis stolonifera (‘SR1020’) were inoculated by placing potato dextrose agar (PDA) plugs, colonized by mycelia of each S. homoeocarpa isolate, onto the seedlings' leaves. Sterile PDA plugs were placed on plants as controls. Leaf lesions developed after 4 days only on inoculated plants, and S. homoeocarpa was reisolated from lesions, satisfying Koch's postulates. The nuclear ribosomal internal transcribed spacer (ITS) region was amplified from DNA extracted from cultures of the three buffalograss isolates and a bentgrass isolate using primers ITS4 and ITS5 (2) and sequenced. Sequences were similar to one another (97 to 99% identical), however, two isolates shared a 420-bp, type I intron in the 18S small subunit rDNA. A search of GenBank at NCBI found the ITS sequences were most similar to the ITS regions of other S. homoeocarpa accessions (97% identical). The ITS sequences from the four isolates were deposited in GenBank (Accession Nos. EU123800–EU123803). To our knowledge, this is the first report of dollar spot on a native, warm-season grass in the United States and the disease appears to be endemic to buffalograss in Oklahoma and Kansas (N. A. Tisserat, personal communication). References: (1) R. W. Smiley et al. Page 22 in: Compendium of Turfgrass Diseases. 3rd ed. The American Phytopathological Society, St. Paul, MN, 2005. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press Inc., New York, 1990.


Plant Disease ◽  
2003 ◽  
Vol 87 (7) ◽  
pp. 875-875 ◽  
Author(s):  
P. Titone ◽  
M. Mocioni ◽  
A. Garibaldi ◽  
M. L. Gullino

During January 2002, Agrostis stolonifera and Poa annua turfgrasses on a golf course in Avigliana (northern Italy) exhibited 10- to 45-cm-diameter circular patches when the snow melted from the greens, tees, and fairways. Many patches coalesced to form large areas of strawcolored blighted turfgrass. At the patch margin, infected plants were covered with white-to-gray mycelium. Plants within patches were matted and appeared slimy with mycelium and sclerotia that were light pink, irregularly shaped, and less than 5 mm in diameter. Isolation from infected leaves on potato dextrose agar, supplemented with 100 mg/l of streptomycin sulfate, consistently yielded a fungus with mycelial, sclerotia, and cultural characteristics of Typhula incarnata (1). Pathogenicity tests were performed by spraying a suspension of mycelium and sclerotia, prepared by chopping mycelium and sclerotia produced in potato dextrose broth, onto 8-week-old A. stolonifera plants grown in plastic trays (45 × 30 cm). Trays were maintained at 0°C for 8 weeks in the dark. Blight symptoms developed on inoculated plants after 6 weeks. Non-inoculated plants remained healthy. The pathogen was reisolated from inoculated plants, and the pathogenicity test was repeated once. Typhula blight incited by T. incarnata was reported in Scandinavian countries and in several European countries including Holland, Germany, Austria, and Switzerland (1). To our knowledge, this is the first report of Typhula blight on turfgrass in Italy. Reference: (1) J. D. Smith et al. 1989. Fungal Diseases of Amenity Turf Grasses. E & FN Spong Ltd, London.


Sign in / Sign up

Export Citation Format

Share Document