scholarly journals New North American Isolates of Venturia inaequalis Can Overcome Apple Scab Resistance of Malus floribunda 821

Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 649-655 ◽  
Author(s):  
David Papp ◽  
Jugpreet Singh ◽  
David Gadoury ◽  
Awais Khan

Apple scab, caused by Venturia inaequalis, is a destructive fungal disease of major apple cultivars worldwide, most of which are moderately to highly susceptible. Thus, development of scab resistant cultivars is one of the highest priorities of apple breeding programs. The principal source of resistance for breeding programs has been the scab resistance gene Rvi6 that originated from the Japanese crabapple Malus floribunda (Sieb.) sel. 821. Isolates of V. inaequalis able to overcome Rvi6 have been identified in Europe, but have not yet been reported on the American continents. We recently discovered scab infection on M. floribunda 821 trees in a research orchard at Geneva, NY, U.S.A., where approximately 10% of the leaves bore profusely sporulating apple scab lesions, many of which had coalesced to cover entire leaves. We observed both chlorosis, typical to Rvi6, and pinpoint pitting symptoms typical to failed infections by V. inaequalis on hosts bearing the Rvi7 gene. We assessed genetic diversity and population genetic structure of 11 V. inaequalis isolates in total, of North American and European origin, isolated from M. floribunda 821, ‘Nova Easygro’, ‘Golden Delicious’, TSR33T239, ‘Schone van Boskoop’, and ‘Prima’, using 16,321 genome-wide SNPs. Population genetic structure and PCA separated the isolates into distinct European and U.S. groups. The forgoing suggests that the new Rvi6 virulent isolates emerged within U.S. populations, rather than being transported from Europe. The complete resistance breakdown in M. floribunda 821 but not in descendant cultivars, which kept their field resistance, suggests that durable resistance to apple scab will require a more comprehensive understanding of Rvi6 mediated resistance in diverse genetic backgrounds.

2019 ◽  
Author(s):  
David Papp ◽  
Jugpreet Singh ◽  
David Gadoury ◽  
Awais Khan

AbstractApple scab, caused by Venturia inaequalis (Cke.) Wint., is a destructive fungal disease of major apple cultivars worldwide, most of which are moderately to highly susceptible. Thus, development of scab resistant cultivars is one of the highest priorities of apple breeding programs. The principal source of resistance for breeding programs has been the scab resistance gene Rvi6 that originated from the Japanese crabapple Malus floribunda (Sieb.) sel. 821. Isolates of V. inaequalis able to overcome Rvi6 have been identified in Europe, but have not yet been reported on the American continents. We recently discovered scab infection on M. floribunda 821 trees in a research orchard at Geneva, New York, USA, where approximately 10% of the leaves bore profusely sporulating apple scab lesions, many of which had coalesced to cover entire leaves. Chlorosis and pinpoint pitting symptoms typical of failed infections by V. inaequalis on hosts bearing the Rvi6 and Rvi7 genes were also observed. We assessed genetic diversity and population genetic structure of six V. inaequalis isolates collected from M. floribunda 821, one isolate from ‘Nova Easygro’, one isolate from ‘Golden Delicious’ and two isolates from Europe (11 isolates in total) using 16,321 genome-wide SNPs. Population genetic structure and PCA separated the isolates into distinct European and USA groups. The forgoing suggests that the new Rvi6 virulent isolates emerged within USA populations, rather than being transported from Europe. The overcoming of resistance in M. floribunda 821 but not in descendant cultivars suggests that durable resistance to apple scab will require a more comprehensive understanding of Rvi6 mediated resistance in diverse genetic backgrounds.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0160737 ◽  
Author(s):  
Leila Ebrahimi ◽  
Khalil-Berdi Fotuhifar ◽  
Mohammad Javan Nikkhah ◽  
Mohammad-Reza Naghavi ◽  
Niranjan Baisakh

PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0167415 ◽  
Author(s):  
Leila Ebrahimi ◽  
Khalil-Berdi Fotouhifar ◽  
Mohammad Javan Nikkhah ◽  
Mohammad-Reza Naghavi ◽  
Niranjan Baisakh

2016 ◽  
Vol 97 (3) ◽  
pp. 823-838 ◽  
Author(s):  
Michael R. Buchalski ◽  
Benjamin N. Sacks ◽  
Daphne A. Gille ◽  
Maria Cecilia T. Penedo ◽  
Holly B. Ernest ◽  
...  

2008 ◽  
Vol 154 (4) ◽  
pp. 755-763 ◽  
Author(s):  
Ana B. Christensen ◽  
Eric F. Christensen ◽  
David W. Weisrock

Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2074-2081 ◽  
Author(s):  
Andrea Patocchi ◽  
Andreas Wehrli ◽  
Pierre-Henri Dubuis ◽  
Annemarie Auwerkerken ◽  
Carmen Leida ◽  
...  

Apple scab, caused by Venturia inaequalis, is a major fungal disease worldwide. Cultivation of scab-resistant cultivars would reduce the chemical footprint of apple production. However, new apple cultivars carrying durable resistances should be developed to prevent or at least slow the breakdown of resistance against races of V. inaequalis. One way to achieve durable resistance is to pyramid multiple scab resistance genes in a cultivar. The choice of the resistance genes to be combined in the pyramids should take into account the frequency of resistance breakdown and the geographical distribution of apple scab isolates able to cause such breakdowns. In order to acquire this information and to make it available to apple breeders, the VINQUEST project ( www.vinquest.ch ) was initiated in 2009. Ten years after launching this project, 24 partners from 14 countries regularly contribute data. From 2009 to 2018, nearly 9,000 data points have been collected. This information has been used to identify the most promising apple scab resistance genes for developing cultivars with durable resistance, which to date are: Rvi5, Rvi11, Rvi12, Rvi14, and Rvi15. As expected, Rvi1, together with Rvi3 and Rvi8, were often overcome, and have little value for scab resistance breeding. Rvi10 may also belong to this group. On the other hand, Rvi2, Rvi4, Rvi6, Rvi7, Rvi9, and Rvi13 are still useful for breeding, but their use is recommended only in extended pyramids of ≥3 resistance genes.


Sign in / Sign up

Export Citation Format

Share Document