scholarly journals First Report of Powdery Mildew Caused by Oidium Subgenus Pseudoidium on Mandevilla splendens in Italy

Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 682-682
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Mandevilla splendens (Hook.) Woodson is a tropical plant belonging to the Apocynaceae family and grown in Italy as an ornamental. It is generally potted and used to create small barriers on terraces and gardens. During February 2003, severe outbreaks of a previously unknown powdery mildew were observed in a commercial glasshouse located at Albenga (northern Italy) where 30% of the plants were affected by the disease. Infected young leaves were covered on both sides with white mycelia. Mycelia were more evident on the lower surface of older leaves. As the disease progressed, infected leaves turned reddish and eventually became yellow and died. Powdery mildew infections sometimes cause leaves to distort and have reduced growth. Conidia were hyaline, ellipsoid or cylindrical, sometimes appeared to adhere in chains, measured 9 to 15 × 14 to 28 μm (average 12 × 21 μm), and did not show fibrosin bodies. Foot cell was cylindric and appressorium lobed. Cleistothecia were not observed. The pathogen was identified as Oidium sp. subgenus Pseudoidium (1,2,3). Pathogenicity was confirmed by gently pressing diseased leaves onto young leaves of healthy, 1-year-old M. splendens plants grown in 3.5 liter pots. Three plants were inoculated, while three noninoculated plants served as controls. After inoculation, plants were maintained in a growth chamber at 18°C (12-h light, relative humidity >75%). After 60 days, powdery mildew symptoms were observed on inoculated plants. Noninoculated plants remained healthy. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on M. splendens in Italy, as well as in the world. Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) R. Belanger et al., eds. The powdery mildew A comprehensive treatise. The American Phytopathological Society, St Paul, MN, 2002. (2) U. Braun. Nova Hedwigia, 89:700, 1987. (3) R. T. A. Cook et al. Mycol. Res. 101:975, 1997.

Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 682-682
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
D. Bertetti ◽  
M. L. Gullino

Salvia scabra Thunb. is grown and used on the Italian Riviera as a potted plant and used in gardens. During the spring of 2003, severe outbreaks of a previously unknown powdery mildew were observed in a collection of Salvia spp. maintained at an experimental station at Albenga (northern Italy). Powdery mildew was observed only on S. scabra. Leaves were covered with white exophytic mycelia on both surfaces. As the disease progressed, infected leaves turned yellow and died. Conidia were single, hyaline, cylindric, and measured 21.3 to 35.5 × 12.5 to 22.5 μm (average 28.2 × 18.4 μm). Observations made with a light microscope revealed that foot cells were cylindric and appressoria lobed. Cleistothecia were not observed. The pathogen was identified as Oidium subgenus Pseudoidium (1,2), and pathogenicity was confirmed by gently pressing diseased leaves onto mature leaves of healthy, 40-day-old S. scabra plants. Five plants of S. scabra were used as replicates. Noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a growth chamber at 20°C. After 5 days, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on S. scabra in Italy as well as in the world. Erysiphe polygoni DC. (Oidium subgenus Pseudoidium) and E. cichoracearum DC. (Oidium subgen us Reticuloidium) were previously reported as causal agents of powdery mildew on other species of Salvia (S. officinalis and S. sclarea) (3,4). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) R. Belanger et al., eds. The Powdery Mildew A Comprehensive Treatise. The American Phytopathological Society, St Paul, MN, 2002. (2) U. Braun. Nova Hedwigia. 89:700, 1987. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (4) A. Pisi and M. G. Bellardi. Inf. Fitopatol. 48(10):57, 1998.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 682-682
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
D. Bertetti ◽  
M. L. Gullino

Iceland poppy (Papaver nudicaule L.) is grown on the Italian Riviera for export as a cut flower and its importance in the industry is increasing. During the spring of 2003, severe outbreaks of powdery mildew that had not been reported previously, occurred in several commercial plantings grown outdoors in containers near Imperia in northern Italy. Mycelium was observed on all green organs of the plant (leaves, stems, and petioles). Both surfaces on the leaves were affected, and heavily colonized leaves were distorted. As the disease progressed, diseased leaves turned yellow and died. The disease did not affect the flowers. Conidia were hyaline, cylindric, and measured 10.8 to 29.8 × 16.8 to 48.0 μm (average 13.7 × 37.3 μm). Foot cells were cylindric and appressoria unlobed. Fibrosin bodies were not present, and cleistothecia were not observed. The pathogen was identified as Oidium sp. subgenus Pseudoidium (1,2). Pathogenicity was confirmed by gently pressing leaves with visible sporulation onto the leaves of five 90-day-old P. nudicaule plants that were healthy and free of symptoms. Five noninoculated healthy plants served as controls. Inoculated and noninoculated plants were maintained in a growth chamber at 15°C with a 12-h photoperiod. After 7 to 10 days, typical symptoms of powdery mildew developed on inoculated plants but not on noninoculated plants. Previously, Erysiphe cruciferarum Opiz ex L. Junell has been reported on P. nudicaule in all continents, and E. cichoracearum DC. and E. polygoni DC. have been reported in several countries, including Italy, as a causal agent of powdery mildew on other species of Papaver including P. rhoeas and P. strigosum. To our knowledge, this is the first report of powdery mildew caused by an Oidium sp. on P. nudicaule in Italy. The voucher specimen is kept in the department collection at the University of Torino. References: (1) R. Belanger et al., eds. The Powdery Mildew A Comprehensive Treatise. The American Phytopathological Society, St Paul, MN, 2002. (2) U. Braun. Nova Hedwigia. 89:700, 1987.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 681-681
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Aquilegia flabellata Sieb. and Zucc. (columbine) is a perennial garden species belonging to the family Ranunculaceae. During the summer of 2003, a severe outbreak of a previously unknown powdery mildew was observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia were hyaline, ellipsoid, and measured 31.2 to 47.5 × 14.4 to 33 μm (average 38.6 × 21.6 μm). Fibrosin bodies were not present. Cleistothecia were globose, brown, had simple appendages, ranged from 82 to 127 (average 105) μm in diameter, and contained one to two asci. Ascocarp appendages measured five to eight times the ascocarp diameter. Asci were cylindrical (ovoidal) and measured 45.3 to 58.2 × 30.4 to 40.2 μm. Ascospores (three to four per ascus) were ellipsoid or cylindrical and measured 28.3 to 31.0 × 14.0 to 15.0 μ;m. On the basis of its morphology, the pathogen was identified as Erysiphe aquilegiae var. aquilegiae (1). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five, healthy A. flabellata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a garden where temperatures ranged between 20 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on Aquilegia flabellata in Italy. E. communis (Wallr.) Link and E. polygoni DC. were reported on several species of Aquilegia in the United States (2), while E. aquilegiae var. aquilegiae was previously observed on A. flabellata in Japan and the former Union of Soviet Socialist Republics (3). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Nova Hedwigia, 89:700, 1987. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) K. Hirata. Host Range and Geographical Distribution of the Powdery Mildews. Faculty of Agriculture, Niigata University, 1966.


Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 484-484 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Bellis perennis (English daisy) is a flowering plant belonging to the Asteraceae and is increasingly grown as a potted plant in Liguria (northern Italy). In February 2007, severe outbreaks of a previously unknown powdery mildew were observed on plants in commercial farms at Albenga (northern Italy). Both surfaces of leaves of affected plants were covered with white mycelia and conidia. As the disease progressed, infected leaves turned yellow. Mycelia and conidia also were observed on stems and flower calyxes. Conidia were hyaline, ellipsoid, borne in chains (as many as three conidia per chain), and measured 27.7 × 16.9 (15.0 to 45.0 × 10.0 to 30.0) μm. Conidiophores measured 114.0 × 12.0 (109.0 to 117.0 × 11.0 to 13.0) μm and showed a foot cell measuring 78.0 × 11.0 (72.0 to 80.0 × 11.0 to 12.0) μm followed by two shorter cells. Fibrosin bodies were absent. Chasmothecia were not observed in the collected samples. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 415 bp obtained showed an E-value of 7e–155 with Golovinomyces cichoracearum (3). The nucleotide sequence has been assigned the GenBank Accession No. AB077627.1 Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy B. perennis plants. Twenty plants were inoculated. Fifteen noninoculated plants served as a control. Plants were maintained in a greenhouse at temperatures ranging from 10 to 30°C. Seven days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. The fungus observed on inoculated plants was morphologically identical to that originally observed. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on B. perennis in Italy. The disease was already reported in other European countries (2). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun The Powdery Mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena, Germany, 1995. (3) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000.


Plant Disease ◽  
2020 ◽  
Author(s):  
Siti Izera Ismail ◽  
Aziera Roslen

Euphorbia tithymaloides L. (zig-zag plant) is a succulent, perennial shrub belonging to the Euphorbiaceae family and is widely cultivated in Malaysia for ornamental purposes and commercial values. In June 2019, typical symptoms of powdery mildew were observed on over 50% of the leaves of E. tithymaloides in a garden at Universiti Putra Malaysia, Serdang city of Selangor province, Malaysia. Initial symptoms included circular to irregular white powdery fungal colonies on both leaf surfaces and later covered the entire leaf surface. Severely infected leaves became necrotic, distorted and senesced. A voucher specimen Ma (PM001-Ma) was deposited in the Mycology laboratory, Faculty of Agriculture, UPM. Microscopic observation showed hyphae hyaline, branched, thin-walled, smooth, 3 to 6 µm wide with nipple-shaped appressoria. Conidiophores were straight, measured 30 to 90 μm long × 8 to 12 μm wide and composed of a cylindrical foot cell, 50 to 75 μm long. Conidia formed in chains were hyaline, ellipsoid to oval with fibrosin bodies, measured 25 to 36 × 16 to 20.1 μm in size and chasmothecia were not observed on the infected leaves. Genomic DNA was directly isolated from mycelia and conidia of isolate Ma using DNeasy Plant Mini Kit (Qiagen, USA). The universal primer pair ITS4/ITS5 of rDNA (White et al. 1990) was used for amplification and the resulting 569-bp sequence was deposited in GenBank (Accession no. MT704550). A BLAST nucleotide search revealed 100% similarity with that of Podosphaera xanthii on Momordica charantia wild from Taiwan (Accession no. KM505135) (Kirschner and Liu 2015). Both the morphological characteristics of the anamorph and ITS sequence data support the identification of this powdery mildew on E. tithymaloides as Podosphaera xanthii (Castagne) U. Braun & Shishkoff (Braun and Cook 2012). A pathogenicity test was conducted by gently pressing the infected leaves onto young leaves of five healthy potted plants. Five noninoculated plants were used as controls. The inoculated plants were maintained in a greenhouse at 25 ± 2°C and the test was repeated. Seven days after inoculation, white powdery symptoms were observed similar to those on the naturally infected leaves, while control plants remained asymptomatic. The fungus on the inoculated leaves was morphologically and molecularly identical to the fungus on the original specimens. Sequence alignments were made using MAFFT v.7.0 (Katoh et al. 2019) and a maximum likelihood phylogram was generated by MEGA v.7.0 (Kumar et al. 2016). Isolate Ma grouped in a strongly supported clade (100% bootstrap value) with the related species of P. xanthii available in GenBank based on the ITS region. Powdery mildew caused by P. xanthii has been reported as a damaging disease that can infect a broad range of plants worldwide (Farr and Rossman 2020). It also has been recently reported on Sonchus asper in China (Shi et al. 2020). According to our knowledge, this is the first report of powdery mildew caused by P. xanthii on E. tithymaloides worldwide. The occurrence of powdery mildew on E. tithymaloides could pose a serious threat to the health of this plant, resulting in death and premature senescence of young leaves.


Plant Disease ◽  
2004 ◽  
Vol 88 (9) ◽  
pp. 1045-1045
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Honeysuckle (Lonicera caprifolium L., family Caprifoliaceae) is a climbing shrub used in gardens to cover walls and supports. During the summer of 2003, severe outbreaks of a previously unknown powdery mildew were observed on this species in some gardens near Biella (northern Italy). The first symptoms included extensive chlorosis on leaves, followed by the appearance of white mycelium on the adaxial and abaxial leaf surfaces. As the disease progressed, infected leaves turned yellow and died. Conidia were hyaline, ellipsoidal, and measured 27.6 to 43.2 × 12.2 to 21.6 μm (average 35.7 × 17.6 μm). Foot cells were cylindric and appressoria lobed. Fibrosin bodies were not present. Cleistothecia were not observed during the growing season. The pathogen was identified as Oidium subgenus Pseudoidium (2). The inoculation procedure involved gently pressing diseased leaves onto leaves of healthy L. caprifolium plants. Three plants of L. caprifolium were used as replicates. Noninoculated plants served as control. Inoculated and noninoculated plants were maintained in a garden at temperatures ranging from 15 to 25°C. After 10 days, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of powdery mildew on L. caprifolium in Italy. The presence of powdery mildew on different species of Lonicera has been reported in several countries, particularly, Microsphaera miurae U. Braun on L. morowii A. Gray in Germany (1), M. lonicerae (DC.) Winter on L. peryclimenum L. in England (3), and M. lonicerae-ramosissimae on L. ramosissima Fr. & Sav. in Japan (4). The conidia of M. lonicerae are smaller than those of the Oidium sp. reported on L. caprifolium. Voucher specimens are available at DIVAPRA Collection at the University of Torino. References: (1) U. Braun. Mycotaxon 16:417, 1983. (2) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (3) J. Robbins. Cecidology 15:15, 2000. (4) S. Tanda. Mycoscience 41:155, 2000.


Plant Disease ◽  
2004 ◽  
Vol 88 (11) ◽  
pp. 1284-1284
Author(s):  
W. J. Swart

The cashew plant (Anacardium occidentale L.) (family Anacardiaceae) is native to Brazil. It was introduced in East Africa by the Portuguese in the 16th century where it is now widely cultivated, especially in Tanzania, Kenya, and Mozambique. The processed kernels are the most important product derived from the plant, although in Brazil and India, juices, jam, and alcoholic and soft drinks are also made from the pear-shaped edible receptacle. The plant is currently being evaluated in South Africa for commercial production. During May 2002, at least 25% of 5-year-old cashew trees grown from seed in the northern KwaZulu-Natal Province of South Africa were infected with powdery mildew. Signs included extensive growth of white, superficial mycelium bearing upright conidiophores on young shoots with tender leaves, inflorescences, and young receptacles. In severely affected trees, approximately 35% of young shoots and 45% of young receptacles displayed signs of powdery mildew. Severely infected young leaves were brown and deformed in contrast to older leaves that were unaffected. Microscopic examination of diseased tissue revealed hyaline, cylindrical-to-slightly doliform, single-celled conidia (10 to 17.5 × 2.5 to 5 μm) borne in chains. The pathogen was subsequently identified as Oidium anacardii Noack on the basis of morphology (1). No other species of powdery mildew fungi have been reported on cashew. A pathogenicity test was conducted by gently pressing a heavily diseased leaf onto two healthy leaves of each of 10 cashew plants maintained in pots on open benches in the glasshouse at 22 to 25°C and mean relative humidity of 65%. Control treatments entailed pressing an asymptomatic leaf onto each of two healthy leaves per plant. The experiment was conducted three times. After 14 days, at least one powdery mildew colony had developed on 80% of inoculated leaves but were absent from all replications of the control treatment. The source of inoculum for this reported outbreak is unknown, although O. anacardii is known to occur in southern Mozambique less than 100 km from the infected site. Cashew powdery mildew was first officially reported in Tanzania in 1979 where significant crop losses, partially attributable to the pathogen, have been recorded since (3). No significant damage to production has been recorded in Brazil (2). To our knowledge, this is the first report of O. anacardii occurring on cashew in South Africa. References: (1) E. Castellani and F. Casulli. Rivista di Agricoltura Subtropicale e Tropicale 75:211, 1981. (2) F. C. O. Freire et al. Crop Prot. 21:489, 2002. (3) P. J. Martin et al. Crop Prot. 16:5, 1996.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 831-831
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
D. Minerdi ◽  
M. L. Gullino

Veronica spicata (spike speedwell) is a perennial garden species belonging to the family Scrophulariaceae. During the summer through fall of 2004 and 2005, severe outbreaks of a previously unknown powdery mildew were observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed, infected leaves turned yellow and died. Very rarely was the mycelium observed on the lower surface of leaves or on petioles and flowers. Foot cell was cylindric and measured 19.2 to 25.7 × 10.8 to 14.3 μm (average 21.9 × 12.0 μm). Conidia were hyaline, ellipsoid, brought in short chains (three conidia per chain), and measured 22.2 to 40.8 × 13.6 to 21.6 μm (average 30.1 × 17.0 μm). Conidiophores measured 45.5 to 74.0 × 10.4 to 11.0 μm (average 59.4 × 10.6 μm). Fibrosin bodies were absent. Cleistothecia were never observed on the samples collected. The ITS region (internal transcribed spacer) of rDNA was amplified using the primers ITS4/ITS6 (3) and sequenced. BLASTn analysis (1) of the 504 bp obtained showed an E-value of 0.0 with Erysiphe (Golovinomyces) orontii (2). The nucleotide sequence has been assigned GenBank Accession No. DQ386696. Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five healthy Veronica spicata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a greenhouse where temperatures ranged between 15 and 28°C. After 15 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of powdery mildew on V. spicata in Italy. Sphaerotheca fuliginea has been reported as the causal agent of powdery mildew on V. spicata (4). Specimens of this disease are available at DIVAPRA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun. Nova Hedwigia 89:166, 1987. (3) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (4) B. Ing. Mycologist 4:125, 1990.


Plant Disease ◽  
2004 ◽  
Vol 88 (6) ◽  
pp. 682-682
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Akebia quinata Decne., an ornamental species belonging to the family Lardizabalaceae, is used as a climbing species in gardens to cover walls as well as supports and is very much appreciated because of its dark red flowers. During the summer of 2003, severe outbreaks of a previously unknown powdery mildew were observed on established plantings in several gardens near Biella (northern Italy). The upper surfaces of leaves were covered with white mycelium, and the corresponding abaxial surface of infected leaves were chlorotic. Young, green stems also affected showed extended chlorosis. As the disease progressed, infected leaves turned yellow and died. Foot cell was cylindric and appressorium lobed. Conidia formed singly were hyaline, ellipsoid, and measured 26.4 to 45.6 × 10.6 to 15.6 μm (average 35.1 × 12.7 μm). Fibrosin bodies were not present. The pathogen was identified as Oidium sp. subgenus Pseudoidium (1) partially because cleistothecia were not observed. Conidial measurements are close to those reported for Microsphaera akebiae Sawada. Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of healthy A. quinata plants. Three plants of A. quinata were used as replicates. Noninoculated plants served as controls. Plants were maintained between 20 and 30°C in a garden located 5 km from where the disease was originally found. After 10 days, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of the presence of powdery mildew on A. quinata in Italy. The disease is currently restricted to the area of Biella. The presence of M. akebiae was recently reported in the Netherlands (2). Specimens of this disease are available at the DIVAPRA Collection at the University of Torino. References: (1) U. Braun and S. Takamatsu. Schlechtendalia, 4:1, 2000. (2) M. Scholler and W. Gams. Nova Hedwigia, 67:101, 1998.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 827-827 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Euphorbia pulcherrima (poinsettia) is a winter-flowering plant grown primarily for Christmas sales. During the fall of 2005, severe outbreaks of a previously unknown powdery mildew were observed on cv. Gala in a commercial greenhouse located in Albenga (northern Italy). The abaxial surfaces of green leaves were irregularly covered with white mycelia and conidia, while the adaxial surfaces only showed slight chlorotic round lesions. As the disease progressed, mycelium turned from rose to reddish. Symptoms and signs were never observed on red bracts. Conidia were clavate (55 to 95 × 20 to 40 μm, average 70 × 23 μm) and borne singly on conidiophores that emerged through stomata. On the basis of host, morphological characteristics, and microscopic observations of the intercellular colonization of mesophyll cells, the pathogen was identified as a species of Oidiopsis. Although chasmothecia were not observed, the causal agent based on the literature is believed to be Leveillula clavata Nour (2). Pathogenicity was confirmed by inoculating young leaves of three 4-month-old E. pulcherrima plants, cv. Gala, with a conidial suspension (3 × 105 conidia/ml). Three noninoculated plants sprayed with deionized water served as control. After inoculation, plants were maintained in a growth chamber at 18°C with relative humidity ranging from 56 to 100%. After 20 days, powdery mildew symptoms were observed on leaves of inoculated plants. Noninoculated plants remained healthy. The pathogenicity test was carried out twice. To our knowledge, this is the first report of L. clavata on poinsettia in Italy and probably in Europe. It presently is restricted to a few commercial farms. L. clavata previously has been observed on poinsettia in Kenya (1,2). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) M. L. Daughtrey et al. Powdery Mildew Diseases. Pages 39–42 in: Compendium of Flowering Potted Plant Diseases. The American Phytopathological Society, St. Paul, MN, 1995. (2) M. A. Nour. Trans. Brit. Mycol. Soc. 40:477, 1957.


Sign in / Sign up

Export Citation Format

Share Document