mesophyll cells
Recently Published Documents


TOTAL DOCUMENTS

924
(FIVE YEARS 137)

H-INDEX

56
(FIVE YEARS 5)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Konrad Dełeńko ◽  
Przemysław Nuc ◽  
Dawid Kubiak ◽  
Dawid Bielewicz ◽  
Jakub Dolata ◽  
...  

Abstract Background Despite the frequent use of protoplast-to-plant system in in vitro cultures of plants, the molecular mechanisms regulating the first and most limiting stages of this process, i.e., protoplast dedifferentiation and the first divisions leading to the formation of a microcallus, have not been elucidated. Results In this study, we investigated the function of miRNAs in the dedifferentiation of A. thaliana mesophyll cells in a process stimulated by the enzymatic removal of the cell wall. Leaf cells, protoplasts and CDPs (cells derived from protoplasts) cultured for 24, 72 and 120 h (first cell division). In protoplasts, a strong decrease in the amount of AGO1 in both the nucleus and the cytoplasm, as well as dicing bodies (DBs), which are considered to be sites of miRNA biogenesis, was shown. However during CDPs division, the amounts of AGO1 and DBs strongly increased. MicroRNA transcriptome studies demonstrated that lower amount of differentially expressed miRNAs are present in protoplasts than in CDPs cultured for 120 h. Then analysis of differentially expressed miRNAs, selected pri-miRNA and mRNA targets were performed. Conclusion This result indicates that miRNA function is not a major regulation of gene expression in the initial but in later steps of dedifferentiation during CDPs divisions. miRNAs participate in organogenesis, oxidative stress, nutrient deficiencies and cell cycle regulation in protoplasts and CDPs. The important role played by miRNAs in the process of dedifferentiation of mesophyll cells was confirmed by the increased mortality and reduced cell division of CDPs derived from mutants with defective miRNA biogenesis and miR319b expression.


2021 ◽  
Vol 23 (1) ◽  
pp. 127
Author(s):  
Fenfen Wang ◽  
Naizhi Chen ◽  
Shihua Shen

Plant growth and development relies on the conversion of light energy into chemical energy, which takes place in the leaves. Chlorophyll mutant variations are important for studying certain physiological processes, including chlorophyll metabolism, chloroplast biogenesis, and photosynthesis. To uncover the mechanisms of the golden-yellow phenotype of the hybrid paper mulberry plant, this study used physiological, cytological, and iTRAQ-based proteomic analyses to compare the green and golden-yellow leaves of hybrid paper mulberry. Physiological results showed that the mutants of hybrid paper mulberry showed golden-yellow leaves, reduced chlorophyll, and carotenoid content, and increased flavonoid content compared with wild-type plants. Cytological observations revealed defective chloroplasts in the mesophyll cells of the mutants. Results demonstrated that 4766 proteins were identified from the hybrid paper mulberry leaves, of which 168 proteins displayed differential accumulations between the green and mutant leaves. The differentially accumulated proteins were primarily involved in chlorophyll synthesis, carotenoid metabolism, and photosynthesis. In addition, differentially accumulated proteins are associated with ribosome pathways and could enable plants to adapt to environmental conditions by regulating the proteome to reduce the impact of chlorophyll reduction on growth and survival. Altogether, this study provides a better understanding of the formation mechanism of the golden-yellow leaf phenotype by combining proteomic approaches.


2021 ◽  
Vol 9 (3) ◽  
pp. 114-118

An experiment was carried out to evaluate the anatomical variations in leaves of Pisum sativum grown in medium irrigated with different industrial wastewaters. The Sukhrawa drain area was selected for the collection of wastewaters of different industries in district Okara, Punjab, Pakistan. The experiment was comprised of six wastewater treatments, including protein farm wastewater, rice mill wastewater, combined wastewater of hospital and oil mill, paper mill wastewater and municipal wastewater. The results of anatomical variations in the epidermis, vascular bundle, palisade, and mesophyll cells indicated that the apical part, center, and base of leaf blade all showed normal structure and healthy cells when irrigated with rice mill wastewater and paper mill wastewater, while the center of leaf blade also showed good results when irrigated with the municipal wastewater. So, the results indicate that pea plants can be grown with wastewater from the rice mill, paper mill and municipal wastewater. In the future, wastewater from rice mills, paper mills and municipal wastewater should be considered to check for possible anatomical variations in other plants.


2021 ◽  
Author(s):  
◽  
Tanja Karl

<p>Soil salinity is a major threat to future food stability. Almost 20% of irrigated land is currently too saline to grow traditional crops. Moreover, rising sea levels, scarcity of fresh water, and more intense and prolonged periods of drought are exacerbating the problem. Saline soils severely reduce yields of most crop plants. By contrast, halophytes, which naturally thrive on saline substrates, have a variety of mechanisms to tolerate both the osmotic and cytotoxic components of salt stress. There has been concerted scientific effort worldwide to understand these mechanisms, and to introduce genes that may increase salinity tolerance in crop plants. Many halophytes in the Caryophyllales are pigmented red owing to a tyrosine-derived alkaloid called betacyanin. Recent studies using Disphyma australe, a succulent halophyte common on coastal dunes and rocky outcrops throughout New Zealand, have indicated a role for betacyanins in salinity tolerance. This thesis focuses on how the mechanism through which betacyanins might affect salt tolerance mechanisms in D. australe and whether the putative benefits of betacyanins on salt tolerance might be transferred to naturally non-betacyanic plants. Effects of betacyanin on Na+ distribution in salt-stressed leaves of red and green morphs of D. australe were studied using fluorescence microscopy, cryo-scanning electron microscopy with energy dispersive X-ray analysis, and atomic absorption spectrometry (AAS). In betacyanic leaves Na+ accumulated in the epidermis, while in green leaves Na+ was distributed more evenly across the epidermis and mesophyll. Both leaf types had similar numbers of salt glands, but salt secretion rates were higher in red than in green leaves. Betacyanic leaves under salt stress were able to maintain relatively high K+/ Na+ ratios, essential for many metabolic processes, while the leaves of green plants were not. Leaf sections stained with fluorescein diacetate and propidium iodide showed that mesophyll viability decreased significantly in green leaves under salt stress, while there was almost no decrease in mesophyll viability in the presence of betacyanins. Thus, betacyanic leaves might protect the photosynthetically active mesophyll from cytotoxic effects of Na+ by accumulating Na+ in the epidermis instead of the mesophyll. This in turn leads to more efficient salt secretion and higher K+/ Na+ ratios in the mesophyll, resulting in increased mesophyll viability under salt stress. Effects of high apoplastic sodium concentrations on ion flux kinetics in mesophyll tissue was studied using the non-invasive microelectrode ion flux estimation technique. Mesophyll cells of both betacyanic and green leaves showed a highly unusual K+ flux response; most crop plants leak K+ out of cells upon salt stress, but D. australe and the native Australian Disphyma crassifolium both showed K+ influx upon salt stress. Actively taking up K+ from the apoplast to maintain a high cytosolic K+/ Na+ ratio during salt stress might be an entirely new mechanism to combat the cytotoxic stress component of salinity stress in these halophytes. The salt induced K+ uptake was dependent on the presence of Cl- and Cl- was also taken up into mesophyll cells upon salt stress. Taking up both cations and anions at the same time could avoid membrane depolarisation. Voltage-gated channels, which are involved in the salt induced K+ efflux in glycophytes, would not be activated and this could be a new mechanism to avoid a K+ leak during salt stress. To test whether the beneficial effect of betacyanin production on salt tolerance could be transferred to naturally non-betacyanic plants, transgenic betacyanin-over-expression (BtOE) mutants of Nicotiana tabacum were generated by our colleagues at Plant & Food Research Ltd. Betacyanins in leaf discs of N. tabacum were associated with decreased chlorophyll degradation upon high light and high salt stress. Additionally, the decline in maximum quantum efficiency of PSII after high light and salt treatment was significantly greater in green than in betacyanic leaves. Placing a polycarbonate filter with a similar absorption spectrum to betacyanin over green N. tabacum leaf discs had a similar effect to the presence of betacyanin. Thus, betacyanins probably have a photoprotective effect in N. tabacum, which is essential as both high light and salinity can impair photosynthesis. To assess if the salt tolerance enhancing effect of betacyanin production observed in the leaf discs also occurs in whole N. tabacum plants, the ability to recover from exposure to saturating light was assessed. Betacyanic plants were able to fully recover quicker after exposure to saturation light than green leaves. This research shows that the presence of betacyanins during salt stress correlates with an altered Na+ distribution in leaf tissues and a higher salt secretion rate, which contributed to higher mesophyll viability. Moreover, a completely new ion flux response to salt stress was observed in D. australe and D. crassifolium. The observed salt induced K+ uptake into the mesophyll cells during salt stress might be an entirely new mechanism, to maintain a high K+/ Na+ ratio in the cytosol and avoid the cytotoxic effects of Na+ in photosynthetically active tissue. The beneficial effects of betacyanins could also be transferred to non-betacyanic species, by introducing betacyanin production. These results strongly suggest that betacyanins play a role in salt tolerance in halophytes and might be a valuable resource in increasing the salt tolerance of naturally non-betacyanic crop plants.</p>


2021 ◽  
Author(s):  
◽  
Tanja Karl

<p>Soil salinity is a major threat to future food stability. Almost 20% of irrigated land is currently too saline to grow traditional crops. Moreover, rising sea levels, scarcity of fresh water, and more intense and prolonged periods of drought are exacerbating the problem. Saline soils severely reduce yields of most crop plants. By contrast, halophytes, which naturally thrive on saline substrates, have a variety of mechanisms to tolerate both the osmotic and cytotoxic components of salt stress. There has been concerted scientific effort worldwide to understand these mechanisms, and to introduce genes that may increase salinity tolerance in crop plants. Many halophytes in the Caryophyllales are pigmented red owing to a tyrosine-derived alkaloid called betacyanin. Recent studies using Disphyma australe, a succulent halophyte common on coastal dunes and rocky outcrops throughout New Zealand, have indicated a role for betacyanins in salinity tolerance. This thesis focuses on how the mechanism through which betacyanins might affect salt tolerance mechanisms in D. australe and whether the putative benefits of betacyanins on salt tolerance might be transferred to naturally non-betacyanic plants. Effects of betacyanin on Na+ distribution in salt-stressed leaves of red and green morphs of D. australe were studied using fluorescence microscopy, cryo-scanning electron microscopy with energy dispersive X-ray analysis, and atomic absorption spectrometry (AAS). In betacyanic leaves Na+ accumulated in the epidermis, while in green leaves Na+ was distributed more evenly across the epidermis and mesophyll. Both leaf types had similar numbers of salt glands, but salt secretion rates were higher in red than in green leaves. Betacyanic leaves under salt stress were able to maintain relatively high K+/ Na+ ratios, essential for many metabolic processes, while the leaves of green plants were not. Leaf sections stained with fluorescein diacetate and propidium iodide showed that mesophyll viability decreased significantly in green leaves under salt stress, while there was almost no decrease in mesophyll viability in the presence of betacyanins. Thus, betacyanic leaves might protect the photosynthetically active mesophyll from cytotoxic effects of Na+ by accumulating Na+ in the epidermis instead of the mesophyll. This in turn leads to more efficient salt secretion and higher K+/ Na+ ratios in the mesophyll, resulting in increased mesophyll viability under salt stress. Effects of high apoplastic sodium concentrations on ion flux kinetics in mesophyll tissue was studied using the non-invasive microelectrode ion flux estimation technique. Mesophyll cells of both betacyanic and green leaves showed a highly unusual K+ flux response; most crop plants leak K+ out of cells upon salt stress, but D. australe and the native Australian Disphyma crassifolium both showed K+ influx upon salt stress. Actively taking up K+ from the apoplast to maintain a high cytosolic K+/ Na+ ratio during salt stress might be an entirely new mechanism to combat the cytotoxic stress component of salinity stress in these halophytes. The salt induced K+ uptake was dependent on the presence of Cl- and Cl- was also taken up into mesophyll cells upon salt stress. Taking up both cations and anions at the same time could avoid membrane depolarisation. Voltage-gated channels, which are involved in the salt induced K+ efflux in glycophytes, would not be activated and this could be a new mechanism to avoid a K+ leak during salt stress. To test whether the beneficial effect of betacyanin production on salt tolerance could be transferred to naturally non-betacyanic plants, transgenic betacyanin-over-expression (BtOE) mutants of Nicotiana tabacum were generated by our colleagues at Plant & Food Research Ltd. Betacyanins in leaf discs of N. tabacum were associated with decreased chlorophyll degradation upon high light and high salt stress. Additionally, the decline in maximum quantum efficiency of PSII after high light and salt treatment was significantly greater in green than in betacyanic leaves. Placing a polycarbonate filter with a similar absorption spectrum to betacyanin over green N. tabacum leaf discs had a similar effect to the presence of betacyanin. Thus, betacyanins probably have a photoprotective effect in N. tabacum, which is essential as both high light and salinity can impair photosynthesis. To assess if the salt tolerance enhancing effect of betacyanin production observed in the leaf discs also occurs in whole N. tabacum plants, the ability to recover from exposure to saturating light was assessed. Betacyanic plants were able to fully recover quicker after exposure to saturation light than green leaves. This research shows that the presence of betacyanins during salt stress correlates with an altered Na+ distribution in leaf tissues and a higher salt secretion rate, which contributed to higher mesophyll viability. Moreover, a completely new ion flux response to salt stress was observed in D. australe and D. crassifolium. The observed salt induced K+ uptake into the mesophyll cells during salt stress might be an entirely new mechanism, to maintain a high K+/ Na+ ratio in the cytosol and avoid the cytotoxic effects of Na+ in photosynthetically active tissue. The beneficial effects of betacyanins could also be transferred to non-betacyanic species, by introducing betacyanin production. These results strongly suggest that betacyanins play a role in salt tolerance in halophytes and might be a valuable resource in increasing the salt tolerance of naturally non-betacyanic crop plants.</p>


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maria Ermakova ◽  
Hannah Osborn ◽  
Michael Groszmann ◽  
Soumi Bala ◽  
Andrew Bowerman ◽  
...  

A fundamental limitation of photosynthetic carbon fixation is the availability of CO2. In C4 plants, primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO2 diffusion in facilitating C4 photosynthesis. We have examined the expression, localization, and functional role of selected plasma membrane intrinsic aquaporins (PIPs) from Setaria italica (foxtail millet) and discovered that SiPIP2;7 is CO2-permeable. When ectopically expressed in mesophyll cells of S. viridis (green foxtail), SiPIP2;7 was localized to the plasma membrane and caused no marked changes in leaf biochemistry. Gas-exchange and C18O16O discrimination measurements revealed that targeted expression of SiPIP2;7 enhanced the conductance to CO2 diffusion from the intercellular airspace to the mesophyll cytosol. Our results demonstrate that mesophyll conductance limits C4 photosynthesis at low pCO2 and that SiPIP2;7 is a functional CO2 permeable aquaporin that can improve CO2 diffusion at the airspace/mesophyll interface and enhance C4 photosynthesis.


2021 ◽  
Author(s):  
Xiuru Dai ◽  
Xiaoyu Tu ◽  
Baijuan Du ◽  
Pengfei Dong ◽  
Shilei Sun ◽  
...  

2021 ◽  
Author(s):  
Valeria F. Lima ◽  
David B. Medeiros ◽  
Silvio A. Candido-Sobrinho ◽  
Francisco B.S. Freire ◽  
Nicole P. Porto ◽  
...  

Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we used 13C-HCO3 labelling of tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling into this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results collectively suggest that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.


Sign in / Sign up

Export Citation Format

Share Document