scholarly journals Disease Suppressive Soils: New Insights from the Soil Microbiome

2017 ◽  
Vol 107 (11) ◽  
pp. 1284-1297 ◽  
Author(s):  
Daniel Schlatter ◽  
Linda Kinkel ◽  
Linda Thomashow ◽  
David Weller ◽  
Timothy Paulitz

Soils suppressive to soilborne pathogens have been identified worldwide for almost 60 years and attributed mainly to suppressive or antagonistic microorganisms. Rather than identifying, testing and applying potential biocontrol agents in an inundative fashion, research into suppressive soils has attempted to understand how indigenous microbiomes can reduce disease, even in the presence of the pathogen, susceptible host, and favorable environment. Recent advances in next-generation sequencing of microbiomes have provided new tools to reexamine and further characterize the nature of these soils. Two general types of suppression have been described: specific and general suppression, and theories have been developed around these two models. In this review, we will present three examples of currently-studied model systems with features representative of specific and general suppressiveness: suppression to take-all (Gaeumannomyces graminis var. tritici), Rhizoctonia bare patch of wheat (Rhizoctonia solani AG-8), and Streptomyces. To compare and contrast the two models of general versus specific suppression, we propose a number of hypotheses about the nature and ecology of microbial populations and communities of suppressive soils. We outline the potential and limitations of new molecular techniques that can provide novel ways of testing these hypotheses. Finally, we consider how this greater understanding of the phytobiome can facilitate sustainable disease management in agriculture by harnessing the potential of indigenous soil microbes.

1973 ◽  
Vol 26 (6) ◽  
pp. 1285 ◽  
Author(s):  
GC Mac Nish

Two methods (visual assessment and a bioassay) of detecting the presence of G. graminis var. tritici in wheat stubble were compared. Of the stubble visually assessed as infected, only 4 % was not confirmed as infected by the bioassay. On the other hand, the bioassay showed that 41 % of the stubble visually assessed as free of infection was incorrectly assigned.


2010 ◽  
Vol 100 (5) ◽  
pp. 404-414 ◽  
Author(s):  
Youn-Sig Kwak ◽  
Peter A. H. M. Bakker ◽  
Debora C. M. Glandorf ◽  
Jennifer T. Rice ◽  
Timothy C. Paulitz ◽  
...  

Dark pigmented fungi of the Gaeumannomyces–Phialophora complex were isolated from the roots of wheat grown in fields in eastern Washington State. These fungi were identified as Phialophora spp. on the basis of morphological and genetic characteristics. The isolates produced lobed hyphopodia on wheat coleoptiles, phialides, and hyaline phialospores. Sequence comparison of internal transcribed spacer regions indicated that the Phialophora isolates were clearly separated from other Gaeumannomyces spp. Primers AV1 and AV3 amplified 1.3-kb portions of an avenacinase-like gene in the Phialophora isolates. Phylogenetic trees of the avenacinase-like gene in the Phialophora spp. also clearly separated them from other Gaeumannomyces spp. The Phialophora isolates were moderately virulent on wheat and barley and produced confined black lesions on the roots of wild oat and two oat cultivars. Among isolates tested for their sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), the 90% effective dose values were 11.9 to 48.2 μg ml–1. A representative Phialophora isolate reduced the severity of take-all on wheat caused by two different isolates of Gaeumannomyces graminis var. tritici. To our knowledge, this study provides the first report of an avenacinase-like gene in Phialophora spp. and demonstrated that the fungus is significantly less sensitive to 2,4-DAPG than G. graminis var. tritici.


Author(s):  
J. Walker

Abstract A description is provided for Gaeumannomyces graminis var. tritici. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Gramineae, especially Triticum, Hordeum, Secale, Agropyron and several other grass genera and, more rarely, Sorghum and Zea; also recorded from the roots of plants in other families. DISEASE: Take-all of cereals and grasses (also referred to as deadheads or whiteheads, pietin and pied noir (France), Schwarzbeinigkeit and Ophiobolus Fusskrankheit (Germany), Ophiobolusvoetziekt (Netherlands) and others). Root infection is favoured by soil temperature from 12-20°C (Butler, 1961). Ascospore germ tubes penetrate root hairs and the epidermis in the meristematic region (Weste, 1972) leading to plugging of xylem and root death. GEOGRAPHICAL DISTRIBUTION: (CMI Map 334, ed. 3, 1972). Widespread, especially in temperate zones. Africa; Asia (India, Iran, Japan, USSR): Australasia and Oceania; Europe; North America (Canada, USA); South America (Argentina, Brazil, Chile, Colombia, Uruguay). TRANSMISSION: In soil on infected organic fragments, as runner hyphae on roots of cereals and grasses and, under special conditions, by ascospores. Seed transmission very doubtful (47, 3058).


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Jie Zhang ◽  
Haixia Yan ◽  
Mingcong Xia ◽  
Xiaoyun Han ◽  
Lihua Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document