hydroxamate siderophores
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 10)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 8 (1) ◽  
pp. 21
Author(s):  
Lorenzo Pecoraro ◽  
Xiao Wang ◽  
Dawood Shah ◽  
Xiaoxuan Song ◽  
Vishal Kumar ◽  
...  

Iron (Fe) is the fourth most abundant element on earth and represents an essential nutrient for life. As a fundamental mineral element for cell growth and development, iron is available for uptake as ferric ions, which are usually oxidized into complex oxyhydroxide polymers, insoluble under aerobic conditions. In these conditions, the bioavailability of iron is dramatically reduced. As a result, microorganisms face problems of iron acquisition, especially under low concentrations of this element. However, some microbes have evolved mechanisms for obtaining ferric irons from the extracellular medium or environment by forming small molecules often regarded as siderophores. Siderophores are high affinity iron-binding molecules produced by a repertoire of proteins found in the cytoplasm of cyanobacteria, bacteria, fungi, and plants. Common groups of siderophores include hydroxamates, catecholates, carboxylates, and hydroximates. The hydroxamate siderophores are commonly synthesized by fungi. L-ornithine is a biosynthetic precursor of siderophores, which is synthesized from multimodular large enzyme complexes through non-ribosomal peptide synthetases (NRPSs), while siderophore-Fe chelators cell wall mannoproteins (FIT1, FIT2, and FIT3) help the retention of siderophores. S. cerevisiae, for example, can express these proteins in two genetically separate systems (reductive and nonreductive) in the plasma membrane. These proteins can convert Fe (III) into Fe (II) by a ferrous-specific metalloreductase enzyme complex and flavin reductases (FREs). However, regulation of the siderophore through Fur Box protein on the DNA promoter region and its activation or repression depend primarily on the Fe availability in the external medium. Siderophores are essential due to their wide range of applications in biotechnology, medicine, bioremediation of heavy metal polluted environments, biocontrol of plant pathogens, and plant growth enhancement.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248385
Author(s):  
Lesley-Ann Giddings ◽  
George T. Lountos ◽  
Kang Woo Kim ◽  
Matthew Brockley ◽  
Danielle Needle ◽  
...  

N-hydroxylating flavin-dependent monooxygenases (FMOs) are involved in the biosynthesis of hydroxamate siderophores, playing a key role in microbial virulence. Herein, we report the first structural and kinetic characterization of a novel alkyl diamine N-hydroxylase DesB from Streptomyces sviceus (SsDesB). This enzyme catalyzes the first committed step in the biosynthesis of desferrioxamine B, a clinical drug used to treat iron overload disorders. X-ray crystal structures of the SsDesB holoenzyme with FAD and the ternary complex with bound NADP+ were solved at 2.86 Å and 2.37 Å resolution, respectively, providing a structural view of the active site environment. SsDesB crystallized as a tetramer and the structure of the individual protomers closely resembles the structures of homologous N-hydroxylating FMOs from Erwinia amylovora (DfoA), Pseudomonas aeruginosa (PvdA), and Aspergillus fumigatus (SidA). Using NADPH oxidation, oxygen consumption, and product formation assays, kinetic parameters were determined for various substrates with SsDesB. SsDesB exhibited typical saturation kinetics with substrate inhibition at high concentrations of NAD(P)H as well as cadaverine. The apparent kcat values for NADPH in steady-state NADPH oxidation and oxygen consumption assays were 0.28 ± 0.01 s-1 and 0.24 ± 0.01 s-1, respectively. However, in product formation assays used to measure the rate of N-hydroxylation, the apparent kcat for NADPH (0.034 ± 0.008 s-1) was almost 10-fold lower under saturating FAD and cadaverine concentrations, reflecting an uncoupled reaction, and the apparent NADPH KM was 33 ± 24 μM. Under saturating FAD and NADPH concentrations, the apparent kcat and KM for cadaverine in Csaky assays were 0.048 ± 0.004 s-1 and 19 ± 9 μM, respectively. SsDesB also N-hydroxylated putrescine, spermidine, and L-lysine substrates but not alkyl (di)amines that were branched or had fewer than four methylene units in an alkyl chain. These data demonstrate that SsDesB has wider substrate scope compared to other well-studied ornithine and lysine N-hydroxylases, making it an amenable biocatalyst for the production of desferrioxamine B, derivatives, and other N-substituted products.


2021 ◽  
Vol 83 (1) ◽  
pp. 29-43
Author(s):  
Tammi Duncan ◽  
Margaret Werner-Washburne ◽  
Diana Northup

Siderophores are microbially-produced ferric iron chelators. They are essential for microbial survival, but their presence and function for cave microorganisms have not been extensively studied. Siderophores are classified based on the common functional groups (catechols, hydroxamates, carboxylates, and mixed) that coordinate to ferric (Fe3+) iron. Cave environments are nutrient-limited and previous evidence suggests siderophore usage in carbonate caves. We hypothesize that siderophores are likely used as a mechanism in caves to obtain critical ferric iron. Cave bacteria were collected from long-term parent cultures (LT PC) or short-term parent cultures (ST PC) inoculated with ferromanganese deposits (FMD) and carbonate secondary minerals from Lechuguilla and Spider caves in Carlsbad Caverns National Park, NM. LT PC were incubated for 10−11 years to identify potential chemolithoheterotrophic cultures able to survive in nutrient-limited conditions. ST PC were incubated for 1−3 days to identify a broader diversity of cave isolates. A total of 170 LT and ST cultures, 18 pure and 152 mixed, were collected and used to classify siderophore production and type and to identify siderophore producers. Siderophore production was slow to develop (>10 days) in LT cultures with a greater number of weak siderophore producers in comparison to the ST cultures that produced siderophores in <10 days, with a majority of strong siderophore producers. Overall, 64% of the total cultures were siderophore producers, with the majority producing hydroxamate siderophores. Siderophore producers were classified into Proteobacteria (Alpha-, Beta-, or Gamma-), Actinobacteria, Bacteroidetes, and Firmicutes phyla using 16S rRNA gene sequencing. Our study supports our hypothesis that cave bacteria have the capability to produce siderophores in the subsurface to obtain critical ferric iron.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 2979
Author(s):  
Kojo Sekyi Acquah ◽  
Denzil R. Beukes ◽  
Digby F. Warner ◽  
Paul R. Meyers ◽  
Suthananda N. Sunassee ◽  
...  

In this paper, we report on the chemistry of the rare South African Actinomycete Kribbella speibonae strain SK5, a prolific producer of hydroxamate siderophores and their congeners. Two new analogues, dehydroxylated desferrioxamines, speibonoxamine 1 and desoxy-desferrioxamine D1 2, have been isolated, together with four known hydroxamates, desferrioxamine D1 3, desferrioxamine B 4, desoxy-nocardamine 5 and nocardamine 6, and a diketopiperazine (DKP) 7. The structures of 1–7 were characterized by the analysis of HRESIMS and 1D and 2D NMR data, as well as by comparison with the relevant literature. Three new dehydroxy desferrioxamine derivatives 8–10 were tentatively identified in the molecular network of K. speibonae strain SK5 extracts, and structures were proposed based on their MS/MS fragmentation patterns. A plausible spb biosynthetic pathway was proposed. To the best of our knowledge, this is the first report of the isolation of desferrioxamines from the actinobacterial genus Kribbella.


2020 ◽  
Author(s):  
Scott A. Jarmusch ◽  
Diego Lagos-Susaeta ◽  
Emtinan Diab ◽  
Oriana Salazar ◽  
Juan A. Asenjo ◽  
...  

ABSTRACTSiderophores are iron-chelating compounds that aid iron uptake, one of the key strategies for microorganisms to carve out ecological niches in microbially diverse environments. Desferrioxamines are the principal siderophores produced by Streptomyces spp. Their biosynthesis has been well studied and as a consequence, the chemical potential of the pathway continues to expand. With all of this in mind, our study aimed to explore extremotolerant and Lupine rhizosphere-derived Streptomyces sp. S29 for its potential antifungal capabilities. Cocultivation of isolate S29 was carried out with Aspergillus niger and Botrytis cinerea, both costly fungal phytopathogens in the wine industry, to simulate their interaction within the rhizosphere. The results indicate that not only is Streptomyces sp. S29 extraordinary at producing hydroxamate siderophores but uses siderophore production as a means to ‘starve’ the fungi of iron. High resolution LC-MS/MS followed by GNPS molecular networking was used to observe the datasets for desferrioxamines and guided structure elucidation of new desferrioxamine analogues. Comparing the new chemistry, using tools like molecular networking and MS2LDA, with the known biosynthesis, we show that the chemical potential of the desferrioxamine pathway has further room for exploration.


2020 ◽  
Vol 18 (12) ◽  
pp. 2219-2222 ◽  
Author(s):  
Fleurdeliz Maglangit ◽  
Saad Alrashdi ◽  
Justine Renault ◽  
Laurent Trembleau ◽  
Catherine Victoria ◽  
...  

More than 500 siderophores are known to date, but only three were identified to be aryl-containing hydroxamate siderophores, legonoxamines A and B from Streptomyces sp. MA37, and aryl ferrioxamine 2 from Micrococcus luteus KLE1011.


IUCrJ ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 401-411 ◽  
Author(s):  
Rhys Grinter ◽  
Trevor Lithgow

In order to survive in mixed microbial communities, some species of fungi secrete coprogens, siderophores that facilitate capture of the scarce nutrient iron. The TonB-dependent transporter FhuE is integrated in the outer membrane of Gram-negative bacteria and has been reported to scavenge these fungally produced coprogens. In this work, anEscherichia colistrain was engineered that is dependent solely on FhuE for its access to siderophore-sequestered iron. Using this tool, it is shown that while FhuE is highly active in the import of coprogens, it has some level of promiscuity, acting as a low-affinity transporter for related siderophores. The crystal structure of FhuE in complex with coprogen was determined, providing a structural basis to explain this selective promiscuity. The structural data, in combination with functional analysis, presented in this work show that FhuE has evolved to specifically engage with planar siderophores. A potential evolutionary driver, and a critical consequence of this selectivity, is that it allows FhuE to exclude antibiotics that mimic nonplanar hydroxamate siderophores: these toxic molecules could otherwise cross the outer membrane barrier through a Trojan horse mechanism.


2019 ◽  
Vol 60 (1) ◽  
pp. 75-79 ◽  
Author(s):  
Fleurdeliz Maglangit ◽  
Ming Him Tong ◽  
Marcel Jaspars ◽  
Kwaku Kyeremeh ◽  
Hai Deng

Sign in / Sign up

Export Citation Format

Share Document