Phytopathology Research
Latest Publications


TOTAL DOCUMENTS

99
(FIVE YEARS 99)

H-INDEX

7
(FIVE YEARS 7)

Published By Springer (Biomed Central Ltd.)

2524-4167

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Yu Wang ◽  
Nan Yang ◽  
Yunna Zheng ◽  
Jiaolin Yue ◽  
Vijai Bhadauria ◽  
...  

AbstractUbiquitination is a vital protein post-translational modification (PTM) prevalent in eukaryotes. This modification regulates multiple cellular processes through protein degradation mediated by the 26S proteasome or affecting protein–protein interaction and protein localization. Magnaporthe oryzae causes rice blast disease, which is one of the most devastating crop diseases worldwide. In M. oryzae, ubiquitination plays important roles in growth, pathogenicity, stress response and effector-mediated plant-pathogen interaction. In this review, we summarize the roles of ubiquitination components in the above biological processes of M. oryzae, including single- or multi-subunit E3s, E2s, components of 26S proteasome and also deubiquitinating enzymes. The essential function of ubiquitination in plant-fungus interaction is also discussed. Moreover, this review presents several issues related to the ubiquitination system in M. oryzae, which need to be further explored in future researches.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ping He ◽  
Cong Wang ◽  
Neng Zhang ◽  
Bin Liu ◽  
Yang Yang ◽  
...  

AbstractRice is a crucial food crop worldwide. The genetic diversity in rice germplasm indicates its promising potential utilization in disease and pest control. To explore the relationship between genetic diversity and disease resistance in rice plants, multi-genotype rice varieties developed from multi-parent advanced generation inter-cross (MAGIC) population lines were used here to analyze the correlation between disease occurrence and genetic diversity, as well as for field monitoring of their disease occurrences and yields. We found that genetic diversity and disease resistance of the multi-genotype varieties tested in this study were superior to those of their component lines and mono-genotype varieties, and the incidence of rice blast disease decreased as the genetic diversity of multi-genotype rice varieties increased. We further conducted field trials using these multi-genotype varieties for three years in different rice-planting areas. The results showed that multi-genotype varieties exhibited good disease resistance and high-yielding potential. Thus, proper use of multi-genotype varieties characterized by rich genetic diversity is a promising approach to improve disease resistance of rice plants in agricultural production systems and is of great significance for ensuring food security and achieving sustainable agricultural development.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Muhammad Dilshad Hussain ◽  
Tahir Farooq ◽  
Xi Chen ◽  
Muhammad Tariqjaveed ◽  
Tong Jiang ◽  
...  

AbstractRNA silencing is an evolutionarily homology-based gene inactivation mechanism and plays critical roles in plant immune responses to acute or chronic virus infections, which often pose serious threats to agricultural productions. Plant antiviral immunity is triggered by virus-derived small interfering RNAs (vsiRNAs) and functions to suppress virus further replication via a sequence-specific degradation manner. Through plant-virus arms races, many viruses have evolved specific protein(s), known as viral suppressors of RNA silencing (VSRs), to combat plant antiviral responses. Numerous reports have shown that VSRs can efficiently curb plant antiviral defense response via interaction with specific component(s) involved in the plant RNA silencing machinery. Members in the family Closteroviridae (closterovirids) are also known to encode VSRs to ensure their infections in plants. In this review, we will focus on the plant antiviral RNA silencing strategies, and the most recent developments on the multifunctional VSRs encoded by closterovirids. Additionally, we will highlight the molecular characters of phylogenetically-associated closterovirids, the interactions of these viruses with their host plants and transmission vectors, and epidemiology.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Qingchao Zeng ◽  
Jianbo Xie ◽  
Yan Li ◽  
Xinyi Chen ◽  
Xiaofei Gu ◽  
...  

AbstractThe Bacillus velezensis strain PG12, belonging to the Bacillus amyloliquefaciens group, is an endophytic bacterium known for its antimicrobial activities against crop pathogens. However, our knowledge of the molecular basis underlying its biocontrol activity and the relatedness of different strains in the Bacillus amyloliquefaciens group is limited. Here, we sequenced and analyzed the genome of PG12 to test its taxonomic affiliation and identified genes involved in the biocontrol activity. The phylogenomic analysis results indicate that PG12 belongs to B. velezensis, a subgroup of the B. amyloliquefaciens group. By comparing the genomes of 22 strains in this group, we confirmed that it comprises three different phylogenetic lineages: B. amyloliquefaciens, B. velezensis and B. siamensis. Three secondary metabolism gene clusters related to the production of lipopeptides, namely fengycin, iturin and surfactin, were identified in the genomes of the B. amyloliquefaciens group. The core genome of B. velezensis is enriched in secondary metabolism genes compared with B. siamensis and B. amyloliquefaciens. Three of the five genes pertaining to the gene cluster responsible for fengycin biosynthesis (fenBCD) were found in B. velezensis and B. siamensis, but not in B. amyloliquefaciens. Phenotypic analysis showed that the ∆fenA mutant of PG12 displayed significantly decreased biofilm formation and swarming motility, which indicates that fengycin contributes to the colonization and pathogen control abilities of PG12. Our results also suggest that B. siamensis and B. velezensis have acquired the fenBCD genes from Paenibacillus spp. by horizontal gene transfer (HGT). Taken together, the results provide insights into the evolutionary pattern of the B. amyloliquefaciens group strains and will promote further researches on their taxonomy and functional genomics.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Qiuyu Sun ◽  
Leifu Li ◽  
Fangfang Guo ◽  
Keyu Zhang ◽  
Jiayu Dong ◽  
...  

AbstractSouthern corn rust (SCR) caused by Puccinia polysora Underw is one of the most devastating maize diseases, resulting in substantial yield losses worldwide. The pathogen is an obligate biotrophic parasite that is difficult to culture on artificial media. In recent years, the disease has become prevalent—both globally and in China—and increasing difficult to control because of its wide distribution, long-distance migration, multiple physiological races and fast evolution, all of which have contributed to a considerable increase in the risks of associated epidemics. In this review, we summarize the current knowledge of P. polysora, with emphasis on its global distribution (particularly in China), life and disease cycle, population genetics, migration, physiological races, resistance genes in maize and management. Understanding the underlying factors and processes in SCR epidemics should facilitate management of the disease and breeding for resistant maize varieties.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chaowei Yu ◽  
Qin Lian ◽  
Huihuang Lin ◽  
Lei Chen ◽  
Yizhong Lu ◽  
...  

AbstractPassionfruit (Passiflora edulis) is widely cultivated in tropical and subtropical regions around the world. Several viruses of the genus Potyvirus pose serious threat to passion fruit production. The origin, dispersal and evolution of these potyviruses, however, are poorly understood. Here, we investigated the genetic structure of telosma mosaic virus (TelMV), a potyvirus that infects passionfruit in East and Southeast Asia, after a survey of its incidence in passionfruit plants of China. The phylogeny inferred from 140 nucleotide sequences of the coat protein (CP) gene of TelMV, including 96 determined in this study, separated this virus into 4 clades. TelMV isolates from passionfruit were placed into Clade 1–3, while those from other plant species into Clade 4. Interestingly, TelMV isolates of passionfruit from Thailand were found in all the three clades of Clade 1–3, but those from China and Vietnam were found exclusively in Clade 1. Nevertheless, TelMV isolates within Clade 1 tended to cluster according to their geographical origin. Geographical populations from Thailand, Taiwan and Hainan islands of China showed significant genetic differences with one another and with those from Guangxi, Fujian, Guangdong, Yunnan and Jiangsu provinces of China. Altogether, these data suggest that several distinct TelMV clades had arisen from the passionfruit of Thailand, but only one of which was dispersed. In expanding its distribution, this clade of TelMV has undergone geography-associated evolution. Further studies on this hypothesis may shed new insights into mechanisms underlying the emergence of potyviral diseases in passionfruit plants.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xue Li ◽  
Liqian Guo ◽  
Mengmeng Guo ◽  
Duo Qi ◽  
Xueping Zhou ◽  
...  

AbstractIn recent years, tomato mottle mosaic virus (ToMMV) has become one of the most important viral pathogens affecting solanaceous crop production in Yunnan, Hainan, and Shandong provinces of China, often causing huge yield reductions. To provide farmers and vegetable industry with reliable and easy-to-use ToMMV detection methods, we immunized BALB/c mice with purified ToMMV and obtained six hybridoma cell lines (i.e., 2D6, 9C12, 26A10, 3A4, 23A4 and 17B11) that secrete anti-ToMMV monoclonal antibodies (MAbs) through the hybridoma technology. Using these MAbs as the detection antibody, we developed three serological assays: antigen-coated-plate enzyme-linked immunosorbent assay (ACP-ELISA), dot enzyme-linked immunosorbent assay (dot-ELISA) and tissue print enzyme-linked immunosorbent assay (tissue print-ELISA) for ToMMV detection. Our test results showed that these three newly developed serological methods can be used to specifically detect ToMMV infection in plant samples, but not tobacco mosaic virus, tomato mosaic virus, cucumber green mottle mosaic virus and cucumber mosaic virus. Sensitivity analyses further showed that ACP-ELISA and dot-ELISA can be used to detect ToMMV infection in plant crude extracts diluted at 1:81,920 and 1:40,960 (weight/volume, g/mL), respectively. Surprisingly, the detection limit of the developed dot-ELISA was 26 times higher than that of traditional RT-PCR. Using field-collected plant samples, we have demonstrated that these three new serological methods are accurate and easy-to-use for large-scale detection of ToMMV in fields.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Jiahui Liu ◽  
Ye Liu ◽  
Yue Fang ◽  
Lili Zhang ◽  
Kaixin Yu ◽  
...  

AbstractPotato virus X (PVX) is a widely distributed viral pathogen that causes significant losses in potato production by co-infecting with potato virus Y or potato virus A. In this study, the resistance of 23 potato cultivars to PVX was dissected in detail using a PVX infectious clone containing a yellow fluorescent protein (YFP). Among them, four potato cultivars (Longshu-3, Eugene, Atlantic and Waiyin-2) were found to carry an Rx gene that confers extreme resistance to PVX; one cultivar (Waiyin-1) displayed partial resistance and was able to delay PVX infection by ~ 5 days; while the rest eighteen potato cultivars were susceptible to PVX. Moreover, we found that the replication but not cell-to-cell or long-distance movement of PVX was inhibited in Waiyin-1. Finally, we determined that the expression of pathogenesis-related (PR) genes in Waiyin-1 was not triggered by PVX infection at early infection stage, whereas they were triggered in the Rx-carrying cultivar Atlantic during this period of time. In conclusion, our results confirm that Rx is a major type of resistance gene in potato cultivars in the Northeast part of China. Furthermore, the possible mechanism underlying Waiyin-1 resistance to PVX is discussed.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Kaique S. Alves ◽  
Emerson M. Del Ponte

AbstractThe analysis of the disease progress curves (DPCs) is central to understanding plant disease epidemiology. The shape of DPCs can vary significantly and epidemics can be better understood and compared with an appropriate depiction and analysis. This paper introduces epifitter, an open-source tool developed in R for aiding in the simulation and analysis of DPC data. User-level functions were developed and their use is demonstrated to the reader using actual disease progress curve data for facilitating the conduction of several tasks, including (a) simulation of synthetic DPCs using four population dynamics models (exponential, monomolecular, logistic, and Gompertz); (b) calculation of the areas under disease progress curve and stairs; (c) fitting and ranking the four above-mentioned models to single or multiple DPCs; and (d) generation and customization of graphs. The package requires the installation of R in any desktop computer and the scripted analysis can be fully documented, reproduced, and shared. The epifitter R package provides a flexible suite for temporal analysis of epidemics that is useful for both research and teaching purposes.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yongjiang Wang ◽  
Yanhong Qin ◽  
Shuang Wang ◽  
Desheng Zhang ◽  
Yuting Tian ◽  
...  

AbstractChina is the world’s largest producer of sweet potato (Ipomoea batatas (L.) Lam.). Considering that there are numerous sweet potato-producing regions in China and sweet potato is a vegetatively propagated crop, the genetic diversity of sweet potato viruses could be high in the country. However, studies on species and genetic variabilities of sweet potato viruses in China are limited, making it difficult to prevent and control viral diseases in this crop. During 2014–2019, sweet potato samples with viral disease-like symptoms were randomly collected from sweet potato fields in 25 provinces in China. Twenty-one virus species, including 12 DNA and 9 RNA viruses, were identified in the samples using next-generation sequencing, polymerase chain reaction and rolling-circle amplification methods. One novel sweepovirus species, Sweet potato leaf curl Hubei virus (SPLCHbV), was identified. Two species, Sweet potato collusive virus and Tobacco mosaic virus, were identified for the first time in sweet potato in China. Full-length or nearly full-length genomic sequences of 111 isolates belonging to 18 viral species were obtained. Genome sequence comparisons of potyvirus isolates obtained in this study indicate that the genome of sweet potato virus 2 is highly conserved, whereas the other four potyviruses, sweet potato feathery mottle virus, sweet potato virus G, sweet potato latent virus and sweet potato virus C, exhibited a high genetic variability. The similarities among the 40 sweepovirus genomic sequences obtained from eight sweepovirus species are 67.0–99.8%. The eight sweepoviruses include 14 strains, of which 4 novel strains were identified from SPLCHbV and 1 from sweet potato leaf curl Guangxi virus. Five sweet potato chlorotic stunt virus (SPCSV) isolates obtained belong to the WA strain, and the genome sequences of SPCSV are highly conserved. Together, this study for the first time comprehensively reports the variability of sweet potato viruses in China.


Sign in / Sign up

Export Citation Format

Share Document