HbLFG1, a rubber tree (Hevea brasiliensis) lifeguard protein, can facilitate powdery mildew infection by regulating plant immunity

2021 ◽  
Author(s):  
Xiao Li ◽  
Sipeng Li ◽  
Yuhan Liu ◽  
Qiguang He ◽  
Wenbo Liu ◽  
...  

Powdery mildew causes substantial losses in crop and economic plant yields worldwide. Although powdery mildew infection of rubber trees (Hevea brasiliensis), caused by the biotrophic fungus Erysiphe quercicola, severely threatens natural rubber production, little is known regarding the mechanism by which E. quercicola adapts to H. brasiliensis to invade the host plant. In barley and Arabidopsis thaliana, lifeguard (LFG) proteins, which have topological similarity to BAX INHIBITOR-1, are involved in host plant susceptibility to powdery mildew infection. In this study, we characterized an H. brasiliensis LFG protein, HbLFG1, with a focus on its function in regulating defence against powdery mildew. HbLFG1 gene expression was found to be upregulated during E. quercicola infection. HbLFG1 showed conserved functions in cell death inhibition and membrane localization. Expression of HbLFG1 in Nicotiana benthamiana leaves and A. thaliana Col-0 was demonstrated to significantly suppress callose deposition induced by conserved pathogen-associated molecular patterns chitin and flg22. Furthermore, we found that overexpression of HbLFG1 in H. brasiliensis mesophyll protoplasts significantly suppressed the chitin-induced burst of reactive oxygen species. Although A. thaliana Col-0 and E. quercicola displayed an incompatible interaction, Col-0 transformants overexpressing HbLFG1 were shown to be susceptible to E. quercicola. Collectively, the findings of this study provide evidence that HbLFG1 acts as a negative regulator of plant immunity that facilitates E. quercicola infection in H. brasiliensis.

Planta ◽  
2022 ◽  
Vol 255 (2) ◽  
Author(s):  
Xiao Li ◽  
Mengyao Liu ◽  
Yuhan Liu ◽  
Wenyuan Zhao ◽  
Sipeng Li ◽  
...  

Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1239-1239 ◽  
Author(s):  
L. T. T. Tam ◽  
H. V. Cuong ◽  
N. M. Khue ◽  
M. V. Tri ◽  
H. M. Thanh ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 3078-3078
Author(s):  
L. P. Pieroni ◽  
E. S. Gorayeb ◽  
L. A. Benso ◽  
S. Y. S. Kurokawa ◽  
O. A. P. A. Siqueira ◽  
...  

2019 ◽  
Vol 61 (3) ◽  
pp. 505-518
Author(s):  
Hongpo Wu ◽  
Weiwei Zhang ◽  
Martin Schuster ◽  
Marcin Moch ◽  
Reinhard Windoffer ◽  
...  

Abstract Recessively inherited mutant alleles of Mlo genes (mlo) confer broad-spectrum penetration resistance to powdery mildew pathogens in angiosperm plants. Although a few components are known to be required for mlo resistance, the detailed molecular mechanism underlying this type of immunity remains elusive. In this study, we identified alloxan (5,5-dihydroxyl pyrimidine-2,4,6-trione) and some of its structural analogs as chemical suppressors of mlo-mediated resistance in monocotyledonous barley (Hordeum vulgare) and dicotyledonous Arabidopsis thaliana. Apart from mlo resistance, alloxan impairs nonhost resistance in Arabidopsis. Histological analysis revealed that the chemical reduces callose deposition and hydrogen peroxide accumulation at attempted fungal penetration sites. Fluorescence microscopy revealed that alloxan interferes with the motility of cellular organelles (peroxisomes, endosomes and the endoplasmic reticulum) and the pathogen-triggered redistribution of the PEN1/SYP121 t-SNARE protein. These cellular defects are likely the consequence of disassembly of actin filaments and microtubules upon alloxan treatment. Similar to the situation in animal cells, alloxan elicited the temporary accumulation of reactive oxygen species (ROS) in cotyledons and rosette leaves of Arabidopsis plants. Our results suggest that alloxan may destabilize cytoskeletal architecture via induction of an early transient ROS burst, further leading to the failure of molecular and cellular processes that are critical for plant immunity.


1991 ◽  
Vol 266 (24) ◽  
pp. 15944-15948
Author(s):  
H.I. Lee ◽  
W.F. Broekaert ◽  
N.V. Raikhel ◽  
H. Lee

Sign in / Sign up

Export Citation Format

Share Document