A putative effector of the rubber-tree powdery mildew fungus has elicitor activity that can trigger plant immunity

Planta ◽  
2022 ◽  
Vol 255 (2) ◽  
Author(s):  
Xiao Li ◽  
Mengyao Liu ◽  
Yuhan Liu ◽  
Wenyuan Zhao ◽  
Sipeng Li ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Xiao Li ◽  
Yuhan Liu ◽  
Qiguang He ◽  
Sipeng Li ◽  
Wenbo Liu ◽  
...  

Powdery mildew infects a wide range of crops and economic plants, causing substantial losses. Rubber trees (Hevea brasiliensis) are the primary source of natural rubber, and powdery mildew infection causes significant losses to natural rubber yields. How the causal agent, Erysiphe quercicola, establishes successful infection in rubber trees is largely unknown. Previously, 133 candidate secreted effector proteins (CSEPs) were identified in powdery mildew fungus. In this study, we characterize a CSEP named EqCSEP01276 for its function in suppressing host plant defense responses. We show that EqCSEP01276 is a secreted protein and is able to disturb the localization of 9-cis-epoxycarotenoid dioxygenase 5 (HbNCED5), a key enzyme in abscisic acid (ABA) biosynthesis in plant cell chloroplasts of H. brasiliensis. We also show that this effector inhibits ABA biosynthesis, and that in H. brasiliensis ABA is a positive regulator of the plant immune response against powdery mildew. Our study reveals a strategy by which powdery mildew fungus manipulates plant ABA-mediated defense for a successful infection.


2021 ◽  
Author(s):  
Xiao Li ◽  
Sipeng Li ◽  
Yuhan Liu ◽  
Qiguang He ◽  
Wenbo Liu ◽  
...  

Powdery mildew causes substantial losses in crop and economic plant yields worldwide. Although powdery mildew infection of rubber trees (Hevea brasiliensis), caused by the biotrophic fungus Erysiphe quercicola, severely threatens natural rubber production, little is known regarding the mechanism by which E. quercicola adapts to H. brasiliensis to invade the host plant. In barley and Arabidopsis thaliana, lifeguard (LFG) proteins, which have topological similarity to BAX INHIBITOR-1, are involved in host plant susceptibility to powdery mildew infection. In this study, we characterized an H. brasiliensis LFG protein, HbLFG1, with a focus on its function in regulating defence against powdery mildew. HbLFG1 gene expression was found to be upregulated during E. quercicola infection. HbLFG1 showed conserved functions in cell death inhibition and membrane localization. Expression of HbLFG1 in Nicotiana benthamiana leaves and A. thaliana Col-0 was demonstrated to significantly suppress callose deposition induced by conserved pathogen-associated molecular patterns chitin and flg22. Furthermore, we found that overexpression of HbLFG1 in H. brasiliensis mesophyll protoplasts significantly suppressed the chitin-induced burst of reactive oxygen species. Although A. thaliana Col-0 and E. quercicola displayed an incompatible interaction, Col-0 transformants overexpressing HbLFG1 were shown to be susceptible to E. quercicola. Collectively, the findings of this study provide evidence that HbLFG1 acts as a negative regulator of plant immunity that facilitates E. quercicola infection in H. brasiliensis.


2018 ◽  
Author(s):  
Mathias Nottensteiner ◽  
Bernd Zechmann ◽  
Christopher McCollum ◽  
Ralph Hückelhoven

ABSTRACTPlant immunity is overcome by pathogens by the means of secreted effectors. Host effector targets might be proteins acting in pathogen defense or serve demands of the pathogen. The barley ROP GTPase HvRACB is involved in entry of the powdery mildew fungusBlumeria graminisf.sp.hordei (Bgh)into barley epidermal cells. We found that HvRACB interacts with theROP-interactive peptide 1 (ROPIP1) that is encoded on the active non-long terminal repeat retroelement Eg-R1 ofBgh. Over-expression of ROPIP1 in barley epidermal cells and host-induced post-transcriptional gene silencing (HIGS) ofROPIP1suggested that ROPIP1 is involved in virulence ofBgh. Bimolecular fluorescence complementation and co-localization supported that ROPIP1 can interact with activated HvRACB in planta. We show that ROPIP1 is expressed byBghon barley and translocated into the cytoplasm of infected barley cells. ROPIP1 is recruited to microtubules upon co-expression of MICROTUBULE ASSOCIATED ROP GTPase ACTIVATING PROTEIN (HvMAGAP1) and can destabilize cortical microtubules.BghROPIP might target HvRACB and manipulate host cell microtubule organization for facilitated host cell entry. Data suggest a possible neo-functionalization of retroelement-derived transcripts for the evolution of a pathogen virulence effector.


Genetics ◽  
2020 ◽  
Vol 217 (2) ◽  
Author(s):  
Antony V E Chapman ◽  
Matthew Hunt ◽  
Priyanka Surana ◽  
Valeria Velásquez-Zapata ◽  
Weihui Xu ◽  
...  

Abstract Barley (Hordeum vulgare L.) Mla (Mildew resistance locus a) and its nucleotide-binding, leucine-rich-repeat receptor (NLR) orthologs protect many cereal crops from diseases caused by fungal pathogens. However, large segments of the Mla pathway and its mechanisms remain unknown. To further characterize the molecular interactions required for NLR-based immunity, we used fast-neutron mutagenesis to screen for plants compromised in MLA-mediated response to the powdery mildew fungus, Blumeria graminis f. sp. hordei. One variant, m11526, contained a novel mutation, designated rar3 (required for Mla6 resistance3), that abolishes race-specific resistance conditioned by the Mla6, Mla7, and Mla12 alleles, but does not compromise immunity mediated by Mla1, Mla9, Mla10, and Mla13. This is analogous to, but unique from, the differential requirement of Mla alleles for the co-chaperone Rar1 (required for Mla12 resistance1). We used bulked-segregant-exome capture and fine mapping to delineate the causal mutation to an in-frame Lys-Leu deletion within the SGS domain of SGT1 (Suppressor of G-two allele of Skp1, Sgt1ΔKL308–309), the structural region that interacts with MLA proteins. In nature, mutations to Sgt1 usually cause lethal phenotypes, but here we pinpoint a unique modification that delineates its requirement for some disease resistances, while unaffecting others as well as normal cell processes. Moreover, the data indicate that the requirement of SGT1 for resistance signaling by NLRs can be delimited to single sites on the protein. Further study could distinguish the regions by which pathogen effectors and host proteins interact with SGT1, facilitating precise editing of effector incompatible variants.


Nature ◽  
1966 ◽  
Vol 209 (5026) ◽  
pp. 938-938 ◽  
Author(s):  
G. J. M. A. GORTER

Plant Disease ◽  
2009 ◽  
Vol 93 (8) ◽  
pp. 797-803 ◽  
Author(s):  
Renuka N. Attanayake ◽  
Dean A. Glawe ◽  
Frank M. Dugan ◽  
Weidong Chen

The taxonomy of the powdery mildew fungus infecting lentil in the Pacific Northwest (PNW) of the United States was investigated on the basis of morphology and rDNA internal transcribed spacer (ITS) sequences. Anamorphic characters were in close agreement with descriptions of Erysiphe trifolii. However, teleomorphs formed chasmothecial appendages with highly branched apices, whereas E. trifolii has been described as producing flexuous or sometimes loosely branched appendages. Branched appendages have been described in Erysiphe diffusa, a fungus reported from species of Lens, Glycine, and Sophora, raising the possibility that the PNW fungus could be E. diffusa. Examination of morphological characters of an authentic specimen of E. trifolii from Austria determined that it included chasmothecial appendages resembling those seen in PNW specimens. Furthermore, ITS sequences from five powdery mildew samples collected from lentils in PNW greenhouses and fields from 2006 to 2008 were identical to one another, and exhibited higher similarity to sequences of E. trifolii (99%) than to those of any other Erysiphe spp. available in GenBank. Parsimony analysis grouped the lentil powdery mildew into a clade with Erysiphe baeumleri, E. trifolii, and E. trifolii–like Oidium sp., but indicated a more distant relationship to E. diffusa. In greenhouse inoculation studies, the lentil powdery mildew fungus did not infect soybean genotypes known to be susceptible to E. diffusa. The pathogenicity of E. trifolii on lentil was confirmed using modified Koch's postulates. This is the first report of E. trifolii infecting lentil. E. diffusa and E. trifolii have different host ranges, so the discovery of E. trifolii on lentil has implications both for determining species of powdery mildews on cool-season grain legumes, and in disease management.


2010 ◽  
Vol 23 (9) ◽  
pp. 1217-1227 ◽  
Author(s):  
Ruth Eichmann ◽  
Melanie Bischof ◽  
Corina Weis ◽  
Jane Shaw ◽  
Christophe Lacomme ◽  
...  

BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death–provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251444
Author(s):  
Márk Z. Németh ◽  
Yuusaku Mizuno ◽  
Hiroki Kobayashi ◽  
Diána Seress ◽  
Naruki Shishido ◽  
...  

A total of 26 Ampelomyces strains were isolated from mycelia of six different powdery mildew species that naturally infected their host plants in Japan. These were characterized based on morphological characteristics and sequences of ribosomal DNA internal transcribed spacer (rDNA-ITS) regions and actin gene (ACT) fragments. Collected strains represented six different genotypes and were accommodated in three different clades of the genus Ampelomyces. Morphology of the strains agreed with that of other Ampelomyces strains, but none of the examined characters were associated with any groups identified in the genetic analysis. Five powdery mildew species were inoculated with eight selected Ampelomyces strains to study their mycoparasitic activity. In the inoculation experiments, all Ampelomyces strains successfully infected all tested powdery mildew species, and showed no significant differences in their mycoparasitic activity as determined by the number of Ampelomyces pycnidia developed in powdery mildew colonies. The mycoparasitic interaction between the eight selected Ampelomyces strains and the tomato powdery mildew fungus (Pseudoidium neolycopersici strain KTP-03) was studied experimentally in the laboratory using digital microscopic technologies. It was documented that the spores of the mycoparasites germinated on tomato leaves and their hyphae penetrated the hyphae of Ps. neolycopersici. Ampelomyces hyphae continued their growth internally, which initiated the atrophy of the powdery mildew conidiophores 5 days post inoculation (dpi); caused atrophy 6 dpi; and complete collapse of the parasitized conidiphores 7 dpi. Ampelomyces strains produced new intracellular pycnidia in Ps. neolycopersici conidiophores ca. 8–10 dpi, when Ps. neolycopersici hyphae were successfully destroyed by the mycoparasitic strain. Mature pycnidia released spores ca. 10–14 dpi, which became the sources of subsequent infections of the intact powdery mildew hyphae. Mature pycnidia contained each ca. 200 to 1,500 spores depending on the mycohost species and Ampelomyces strain. This is the first detailed analysis of Ampelomyces strains isolated in Japan, and the first timing and quantification of mycoparasitism of Ps. neolycopersici on tomato by phylogenetically diverse Ampelomyces strains using digital microscopic technologies. The developed model system is useful for future biocontrol and ecological studies on Ampelomyces mycoparasites.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1177
Author(s):  
Yasser S. Mostafa ◽  
Mohamed Hashem ◽  
Ali M. Alshehri ◽  
Saad Alamri ◽  
Ebrahem M. Eid ◽  
...  

This research evaluated the efficacy of essential oils in the management of cucumber powdery mildew. Essential oils of lemongrass, lemon, thyme, peppermint, abundance blend, purification blend, and thieves blend were tested in vitro and under greenhouse conditions in two separate experiments. The effects of essential oils were tested against powdery mildew disease at concentrations of 1.0–2.5 mL/L, and the consequent impact of the oils on plant growth was evaluated. Powdery mildew fungus, Podosphaera xanthii, was identified using sequencing of the ITS region. The essential oils significantly reduced disease incidence up to 77.3% compared with the positive control (p < 0.5). Moreover, the essential oils increased the plant length (up to 187 cm), leaf area (up to 27.5 cm2), fresh weight (up to 123 g), dry weight (up to 22.5 g), number of flowers (16.3), and metabolite content compared with the positive control (p < 0.5). Cell membrane injury decreased significantly in the oil-treated pants (p < 0.5), indicating the protective effect of essential oils. This study recommends the application of essential oils in an appropriate dose (2.5 mL/L) to protect cucumber plants against powdery mildew. Overdose of the oils (more than 2.5 mL/L) should be avoided due to adverse effects.


Sign in / Sign up

Export Citation Format

Share Document