scholarly journals Altered regulation of sympathetic nerve activity by the caudal ventrolateral medulla and nucleus tractus solitarius in obese Zucker rats

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Domitila A. Huber ◽  
Ann M. Schreihofer
2011 ◽  
Vol 301 (1) ◽  
pp. H230-H240 ◽  
Author(s):  
Domitila A. Huber ◽  
Ann M. Schreihofer

Obese Zucker rats (OZR) have elevated sympathetic nerve activity (SNA) and mean arterial pressure (MAP) compared with lean Zucker rats (LZR). We examined whether altered tonic glutamatergic, angiotensinergic, or GABAergic inputs to the rostral ventrolateral medulla (RVLM) contribute to elevated SNA and MAP in OZR. Male rats (14–18 wk) were anesthetized with urethane (1.5 g/kg iv), ventilated, and paralyzed to record splanchnic SNA, heart rate (HR), and MAP. Inhibition of the RVLM by microinjections of muscimol eliminated SNA and evoked greater decreases in MAP in OZR vs. LZR ( P < 0.05). Antagonism of angiotensin AT1 receptors in RVLM with losartan yielded modest decreases in SNA and MAP in OZR but not LZR ( P < 0.05). However, antagonism of ionotropic glutamate receptors in RVLM with kynurenate produced comparable decreases in SNA, HR, and MAP in OZR and LZR. Antagonism of GABAA receptors in RVLM with gabazine evoked smaller rises in SNA, HR, and MAP in OZR vs. LZR ( P < 0.05), whereas responses to microinjections of GABA into RVLM were comparable. Inhibition of the caudal ventrolateral medulla, a major source of GABA to the RVLM, evoked attenuated rises in SNA and HR in OZR ( P <0.05). Likewise, inhibition of nucleus tractus solitarius, the major excitatory input to caudal ventrolateral medulla, produced smaller rises in SNA and HR in OZR. These results suggest the elevated SNA and MAP in OZR is derived from the RVLM and that enhanced angiotensinergic activation and reduced GABAergic inhibition of the RVLM may contribute to the elevated SNA and MAP in the OZR.


Hypertension ◽  
1995 ◽  
Vol 25 (4) ◽  
pp. 834-838 ◽  
Author(s):  
Donald A. Morgan ◽  
Erling A. Anderson ◽  
Allyn L. Mark

2014 ◽  
Vol 306 (9) ◽  
pp. R681-R692 ◽  
Author(s):  
Priscila S. Guimaraes ◽  
Domitila A. Huber ◽  
Maria J. Campagnole-Santos ◽  
Ann M. Schreihofer

Adult obese Zucker rats (OZR; >12 wk) develop elevated sympathetic nerve activity (SNA) and mean arterial pressure (MAP) with impaired baroreflexes compared with adult lean Zucker rats (LZR) and juvenile OZR (6–7 wk). In adult OZR, baroreceptor afferent nerves respond normally to changes in MAP, whereas electrical stimulation of baroreceptor afferent fibers produces smaller reductions in SNA and MAP compared with LZR. We hypothesized that impaired baroreflexes in OZR are linked to reduced activation of brain stem sites that mediate baroreflexes. In conscious adult rats, a hydralazine (HDZ)-induced reduction in MAP evoked tachycardia that was initially blunted in OZR, but equivalent to LZR within 5 min. In agreement, HDZ-induced expression of c-Fos in the rostral ventrolateral medulla (RVLM) was comparable between groups. In contrast, phenylephrine (PE)-induced rise in MAP evoked markedly attenuated bradycardia with dramatically reduced c-Fos expression in the nucleus tractus solitarius (NTS) of adult OZR compared with LZR. However, in juvenile rats, PE-induced hypertension evoked comparable bradycardia in OZR and LZR with similar or augmented c-Fos expression in NTS of the OZR. In urethane-anesthetized rats, microinjections of glutamate into NTS evoked equivalent decreases in SNA, heart rate (HR), and MAP in juvenile OZR and LZR, but attenuated decreases in SNA and MAP in adult OZR. In contrast, microinjections of glutamate into the caudal ventrolateral medulla, a target of barosensitive NTS neurons, evoked comparable decreases in SNA, HR, and MAP in adult OZR and LZR. These data suggest that OZR develop impaired glutamatergic activation of the NTS, which likely contributes to attenuated baroreflexes in adult OZR.


Sign in / Sign up

Export Citation Format

Share Document