Effects of Desflurane in Rat Myocardium

1997 ◽  
Vol 87 (3) ◽  
pp. 599-609 ◽  
Author(s):  
Pierre-Yves Gueugniaud ◽  
Jean-Luc Hanouz ◽  
Benoit Vivien ◽  
Yves Lecarpentier ◽  
Pierre Coriat ◽  
...  

Background The cardiovascular effects of desflurane have been investigated in several in vivo animal and human studies. To determine the possible contributions of myocardial depression, the effects of desflurane on various contractile parameters in isolated cardiac papillary muscles were compared with those of isoflurane and halothane. Methods The effects of desflurane, isoflurane, and halothane (0.5-2.5 minimum alveolar concentration [MAC]) were studied in rat left ventricular papillary muscles (29 degrees C; pH 7.40; stimulation frequency, 12 pulses/min). The inotropic effects were compared under low (isotony) and high (isometry) loads, using the maximum unloaded shortening velocity (Vmax) and maximum isometric active force (AF). The lusitropic effects were compared in isotonic and isometric conditions. Results Desflurane has no significant inotropic effect (AF at 2.5 MAC: 95 +/- 11% of control values; NS) in contrast with halothane and isoflurane (AF at 2.5 MAC: 37 +/- 14 vs. 65 +/- 10%, respectively; P < 0.05). After alpha- and beta-adrenoceptor blockade or pretreatment with reserpine, desflurane induced a negative inotropic effect (AF at 2.5 MAC: 83 +/- 11 vs. 89 +/- 8%, respectively) that was not significantly different from that of isoflurane (AF at 2.5 MAC: 80 +/- 12%). Halothane induced a negative lusitropic effect under low load, which was significantly greater than those of isoflurane and desflurane. In contrast to halothane, isoflurane and desflurane induced no significant lusitropic effect under high load and did not modify postrest potentiation. These results suggest that desflurane did not impair sarcoplasmic reticulum function. Conclusions When compared with isoflurane, desflurane induced a moderate positive inotropic effect related to intramyocardial catecholamine release. After adrenoceptor blockade, desflurane induced a negative inotropic effect comparable with that induced by isoflurane.

2006 ◽  
Vol 105 (5) ◽  
pp. 961-967 ◽  
Author(s):  
Sandrine Rozenberg ◽  
Sophie Besse ◽  
Julien Amour ◽  
Benoît Vivien ◽  
Benoît Tavernier ◽  
...  

Background The myocardial negative inotropic effects of desflurane are less pronounced than those of other halogenated anesthetics, partly because of intramyocardial catecholamine store release. However, the effects of desflurane on aging myocardium are unknown, whereas aging is known to be associated with an attenuation of catecholamine responsiveness. Methods The effects of desflurane (1.9-9.3 vol%) were studied in left ventricular papillary muscle of adult and senescent rats (29 degrees C; 0.5 mm Ca; stimulation frequency 12 pulses/min). The inotropic effects were compared under low and high loads, using the maximum unloaded shortening velocity and maximum isometric active force, and without or with alpha- and beta-adrenoceptor blockade. Results Desflurane induced a moderate positive inotropic effect in adult rats but a negative inotropic effect in senescent rats. After alpha- and beta-adrenoceptor blockade, desflurane induced a comparable negative inotropic effect in adult and senescent rats. No lusitropic effect under low load was observed, whereas desflurane induced a slight but significant positive lusitropic effect under high load similar between the two groups of rats. This positive effect was abolished by adrenoceptor blockade. Conclusion The authors' study suggests that desflurane does not induce significant intramyocardial catecholamine release in senescent myocardium, a result that should be integrated in the well-known alteration in the catecholamine response during aging.


1997 ◽  
Vol 86 (1) ◽  
pp. 147-159 ◽  
Author(s):  
Jean-Luc Hanouz ◽  
Bruno MD Riou ◽  
Laurent Massias ◽  
Yves Lecarpentier ◽  
Pierre Coriat

Background Halothane induces negative inotropic and lusitropic effects in myocardium. It has been suggested that halothane potentiates beta-adrenoceptor stimulation. However, its effects on the inotropic response to alpha-adrenoceptor stimulation and its effects on the lusitropic effects of alpha- and beta-adrenoceptor stimulation are unknown. Methods The effects of halothane (0.5 and 1 minimum alveolar concentration [MAC]) on the inotropic responses induced by phenylephrine (10(-8) to 10(-4) M) and isoproterenol (10(-8) to 10(-4) M) were studied in rat left ventricular papillary muscles in vitro (in Krebs-Henseleit solution at 29 degrees C, pH 7.40, with 0.5 mM calcium and stimulation frequency at 12 pulses/min). The lusitropic effects were studied in isotonic (R1) and isometric (R2) conditions. Results One MAC halothane induced a negative inotropic effect (54 +/- 3%, P < 0.05), increased R1 (109 +/- 3%, P < 0.05), and decreased R2 (88 +/- 2%, P < 0.05). In control groups, phenylephrine (137 +/- 7%, P > 0.05) and isoproterenol (162 +/- 6%, P < 0.05) induced a positive inotropic effect. Halothane did not significantly modify the positive inotropic effect of calcium, suggesting that it did not modify the inotropic reserve of papillary muscles. In contrast, 1 MAC halothane enhanced the positive inotropic effects of phenylephrine (237 +/- 19%, P < 0.05) and isoproterenol (205 +/- 11%, P < 0.05). Halothane did not modify the lusitropic effect of phenylephrine under high or low load. In contrast, 1 MAC halothane impaired the positive lusitropic effect of isoproterenol under low load (P < 0.05), whereas it did not modify the positive lusitropic effect of isoproterenol under high load. Conclusions At clinically relevant concentrations, halothane potentiated the positive inotropic effects of both alpha- and beta-adrenoceptor stimulation. Furthermore, halothane alters the positive lusitropic-effect of beta-adrenoceptor stimulation under low load.


1997 ◽  
Vol 87 (6) ◽  
pp. 1406-1416 ◽  
Author(s):  
Benoit Vivien ◽  
Jean-Luc Hanouz ◽  
Pierre-Yves Gueugniaud ◽  
Yves Lecarpentier ◽  
Pierre Coriat ◽  
...  

Background The effects of halothane and isoflurane on myocardial contraction and relaxation in diseased myocardium are not completely understood. Methods The effects of equianesthetic concentrations of halothane and isoflurane on inotropy and lusitropy in left ventricular papillary muscles of healthy hamsters and those with genetically induced cardiomyopathy (strain BIO 14.6) were investigated in vitro (29 degrees C; pH 7.40; Ca2+ 2.5 mM; stimulation frequency, 3/min) in isotonic and isometric conditions. Results Halothane induced a negative inotropic effect that was greater in cardiomyopathic than in healthy hamsters (1.5 vol%, active isometric force (AF): 19 +/- 8% vs. 28 +/- 11% of control values; P < 0.05). Isoflurane induced a negative inotropic effect that was greater in cardiomyopathic than in healthy hamsters (2.0 vol%, AF: 64 +/- 13% vs. 75 +/- 11% of control values; P < 0.01). However, the negative inotropic effects of halothane and isoflurane were not different for cardiomyopathic or healthy hamsters when their concentrations were corrected for minimum alveolar concentration (MAC) values in each strain. Halothane induced a negative lusitropic effect under low load, which was more important in cardiomyopathic hamsters, suggesting a greater impairment in calcium uptake by the sarcoplasmic reticulum. In contrast, isoflurane induced a moderate positive lusitropic effect under low load in healthy but not in cardiomyopathic hamsters. Halothane and isoflurane induced no significant lusitropic effect under high load. Conclusions Halothane and isoflurane had greater negative inotropic effects in cardiomyopathic than in healthy hamsters. Nevertheless, no significant differences in their inotropic effects were noted when concentrations were correlated as a multiple of MAC in each strain.


2002 ◽  
Vol 97 (6) ◽  
pp. 1477-1484 ◽  
Author(s):  
Sandrine Rozenberg ◽  
Sophie Besse ◽  
Benoît Vivien ◽  
Pierre Coriat ◽  
Bruno Riou

Background Aging is associated with marked alterations in myocardial contraction and relaxation, whereas halogenated anesthetics depress myocardial contractility. However, their effects on aging myocardium are unknown. Methods Mechanical variables of left ventricular papillary muscles from adult and senescent rats (29 degrees C; pH 7.40; Ca2+ 1.0 or 0.5 mM; stimulation frequency, 12 pulses/min) were studied. The expression of genes coding for the alpha and beta-myosin heavy chain (MHC) and Ca2+ -ATPase of the sarcoplasmic reticulum (SR) were studied. The effects of halothane and isoflurane were studied. The inotropic effects were compared under low and high loads, using the maximum unloaded shortening velocity (Vmax) and maximum isometric active force (AF). The lusitropic effects were compared in isotonic and isometric conditions. Results Senescent rats had a decrease in contraction and relaxation velocities, associated with a reexpression of beta-MHC mRNAs and a decrease in SR Ca2+ -ATPase mRNAs. Halothane induced a lower negative inotropic effect in senescent rats (1.5 vol%, AF: 53 +/- 14% vs. 39 +/- 12% of baseline values; P < 0.01) whereas isoflurane induced a similar negative inotropic effect (1.5 vol%, AF: 81 +/- 7% vs. 87 +/- 7% of baseline values; NS). Halothane induced a negative lusitropic effect in isotonic conditions in adult, but not in senescent, rats. Conclusions The inotropic and lusitropic effects of halothane were less important in senescent than in adult rats, whereas the effects of isoflurane were similar. These differences are probably related to differences in SR function and in the effects of halogenated anesthetics on the SR.


2004 ◽  
Vol 101 (5) ◽  
pp. 1145-1152 ◽  
Author(s):  
Julien Amour ◽  
Jean-Stéphane David ◽  
Benoît Vivien ◽  
Pierre Coriat ◽  
Bruno Riou

Background Halogenated anesthetics potentiate the positive inotropic effects of alpha- and beta-adrenoceptor stimulations. Although diabetes mellitus induces significant myocardial abnormalities, the interaction of halogenated anesthetics and adrenoceptor stimulation in diabetic myocardium remains unknown. Methods Left ventricular papillary muscles were provided from healthy and streptozotocin-induced diabetic rats. Effects of 1 minimum alveolar concentration halothane, isoflurane, and sevoflurane on the inotropic and lusitropic responses of alpha (phenylephrine)- and beta (isoproterenol)-adrenoceptor stimulations were studied at 29 degrees C with 12 pulses/min. Data shown are mean percentage of baseline active force +/- SD. Results Phenylephrine induced comparable positive inotropic effects in healthy and diabetic rats (143 +/- 8 vs. 136 +/- 18%; not significant), but the potentiation by halogenated anesthetics was abolished in the diabetic rats (121 +/- 20, 130 +/- 20, and 123 +/- 20% for halothane, isoflurane, and sevoflurane, respectively; not significant). In diabetic rats, the positive inotropic effect of isoproterenol was markedly diminished (109 +/- 9 vs. 190 +/- 18%; P < 0.05), but its potentiation was preserved with isoflurane (148 +/- 21%; P < 0.05) and sevoflurane (161 +/- 40%; P < 0.05) but not with halothane (126 +/- 16%; not significant). Halothane induced a deleterious effect on the sarcoplasmic reticulum, as shown by its impairment in the lusitropic effect of isoproterenol, compared with isoflurane and sevoflurane. Conclusion Potentiation of the positive inotropic effect of alpha-adrenoceptor stimulation by halogenated anesthetics is abolished in diabetic rats. In contrast, potentiation of beta-adrenoceptor stimulation is preserved with isoflurane and sevoflurane but not with halothane, probably because of its deleterious effects on sarcoplasmic reticulum.


1997 ◽  
Vol 273 (6) ◽  
pp. H2826-H2831 ◽  
Author(s):  
John N. Lorenz ◽  
Evangelia G. Kranias

Phospholamban (PLB) regulates Ca2+- adenosinetriphosphatase activity in cardiac sarcoplasmic reticulum and participates in the regulation of myocardial performance. Animal models with altered levels of PLB permit in vivo evaluation of the physiological role of PLB. This study examined left ventricular (LV) performance in intact PLB heterozygous and homozygous mice under basal and stimulated conditions. A Millar Mikro-Tip transducer was inserted into the right carotid artery and advanced into the LV for direct measurement of ventricular pressure and the first derivative of intraventricular pressure (dP/d t). Baseline blood pressures were increased in PLB heterozygotes and even more so in PLB homozygotes compared with wild types (WT), and there were no differences in heart rate or LV end-diastolic pressure. The increase in pressure was primarily caused by an increase in systolic pressure. Baseline values for positive and negative dP/d t were linearly correlated with PLB levels. In PLB heterozygotes, contractile response to isoproterenol (Iso) was blunted compared with WT, but maximum rates of contraction were similar between the two groups. Contractile performance in PLB homozygous mice, which under baseline conditions was similar to maximum levels seen in WT, showed a blunted response to Iso, and maximum rates of contraction were significantly greater than in either of the other groups, indicating an essential but perhaps not exclusive role for PLB in mediating the inotropic effects of β-adrenergic agonists. The effects of Iso on negative dP/d t were also blunted in both PLB heterozygous and PLB homozygous animals. Our results demonstrate that myocardial function is highly dependent on PLB level and suggest that the cardiovascular effects of PLB perturbations are largely uncompensated for in the intact mouse.


1995 ◽  
Vol 82 (2) ◽  
pp. 436-450 ◽  
Author(s):  
Philippe R. Housmans ◽  
Turkan S. Kudsioglu ◽  
Jonathan Bingham

Background Thiopental's myocardial depressant effects are well known and most likely involve some alteration in intracellular Ca2+ homeostasis. The aim of this study was to investigate the mechanisms of thiopental's negative inotropic effects and its underlying mechanism in isolated ferret ventricular myocardium (which shows physiologic characteristics similar to human ventricular myocardium), and in frog ventricular myocardium, in which Ca2+ ions for myofibrillar activation are derived almost entirely from transsarcolemmal influx. Methods The authors analyzed the effects of thiopental after beta-adrenoceptor blockade on variables of contractility and relaxation, and on the free intracellular Ca2+ transient detected with the Ca(2+)-regulated photoprotein aequorin. Thiopental's effects also were evaluated in ferret right ventricular papillary muscles in which the sarcoplasmic reticulum (SR) function was impaired by ryanodine and in frog ventricular strips with little or no SR function. Results At concentration > or = 10(-4) M, which is in the high range of the clinically encountered free plasma thiopental concentrations, thiopental decreased contractility and the amplitude of the intracellular Ca2+ transient. At equal peak force, peak aequorin luminescence in 10(-4) M thiopental and [Ca2+]0 > 2.25 mM was slightly smaller than that in control conditions at [Ca2+]o = 2.25 mM. This indicates that thiopental causes a small increase in myofibrillar Ca2+ sensitivity. After inactivation of sarcoplasmic reticulum Ca2+ release with 10(-6) M ryanodine, a condition in which myofibrillar activation depends almost exclusively on transsarcolemmal Ca2+ influx, thiopental caused a further decrease in contractility and in the amplitude of the intracellular Ca2+ transient, and thiopental's relative negative inotropic effect was not different from that in control muscles not exposed to ryanodine. Thiopental, > or = 10(-4) M, decreased contractility in frog ventricular myocardium. Conclusions These findings indicate that the direct negative inotropic effect of thiopental results from a decrease in intracellular Ca2+ availability. At least part of thiopental's action is caused by inhibition of transsarcolemmal Ca2+ influx. These effects become apparent at concentrations routinely present during intravenous induction with thiopental.


2004 ◽  
Vol 100 (5) ◽  
pp. 1179-1187 ◽  
Author(s):  
Jean-Stéphane David ◽  
Benoît Tavernier ◽  
Julien Amour ◽  
Benoît Vivien ◽  
Pierre Coriat ◽  
...  

Background Diabetes induces significant myocardial abnormalities, but the effects of halogenated anesthetics on this diseased myocardium remain a matter of debate. Methods Left ventricular papillary muscles and triton-skinned cardiac fibers were provided from control and streptozotocin-induced diabetic rats. The effects of halothane and sevoflurane were studied on inotropic and lusitropic responses, under low (isotony) and high (isometry) loads in papillary muscles and then on isometric tension-Ca2+ concentration (pCa) relations obtained in triton-skinned cardiac fibers. Data are presented as mean +/- SD. Results Sevoflurane and halothane induced a negative inotropic effect that was more important in diabetic rats (active force: 1.5% halothane, 19+/-6 vs. 24+/-6% of baseline, P < 0.05; 3.6% sevoflurane, 47+/-14 vs. 69+/-17% of baseline, P < 0.05). However, when differences in minimum alveolar concentration were considered, no significant difference was observed between groups for halothane. The effects of halothane and sevoflurane on isotonic relaxation and postrest potentiation were not significantly different between groups. In contrast, the decrease in Ca myofilament sensitivity produced by each anesthetic agent was greater in diabetic rats than in control rats (0.65% halothane, -0.15+/-0.07 vs. -0.05+/-0.04 pCa unit, P < 0.05; 1.8% sevoflurane, -0.12+/-0.06 vs. -0.06+/-0.04 pCa unit, P < 0.05). Conclusions The negative inotropic effect of halothane and sevoflurane was greater in diabetic rats, mainly because of a significant decrease in myofilament Ca sensitivity.


2004 ◽  
Vol 287 (3) ◽  
pp. H1194-H1199 ◽  
Author(s):  
Adelino F. Leite-Moreira ◽  
Carmen Brás-Silva

Endothelin (ET)-1 acts on ETA and ETB receptors. The latter include ETB1 (endothelial) and ETB2 (muscular) subtypes, which mediate opposite effects on vascular tone. This study investigated, in rabbit papillary muscles ( n = 84), the myocardial effects of ETB stimulation. ET-1 (10−9 M) was given in the absence or presence of BQ-123 (ETA antagonist). The effects of IRL-1620 (ETB1 agonist, 10−10–10−6 M) or sarafotoxin S6c (ETB agonist, 10−10–10−6 M) were evaluated in muscles with intact or damaged endocardial endothelium (EE); intact EE, in the presence of NG-nitro-l-arginine (l-NNA); and intact EE, in the presence of indomethacin (Indo). Sarafotoxin S6c effects were also studied in the presence of BQ-788 (ETB2 antagonist). ET-1 alone increased 64 ± 18% active tension (AT) but decreased it by 4 ± 2% in the presence of BQ-123. In muscles with intact EE, sarafotoxin S6c alone did not significantly alter myocardial performance. Sarafotoxin S6c (10−6 M) increased, however, AT by 120 ± 27% when EE was damaged and by 39 ± 8% or 23 ± 6% in the presence of l-NNA or Indo, respectively. In the presence of BQ-788, sarafotoxin S6c decreased AT (21 ± 3% at 10−6 M) in muscles with intact EE, an effect that was abolished when EE was damaged. IRL-1620 also decreased AT (22 ± 3% at 10−6 M) in muscles with intact EE, an effect that was abolished when EE was damaged or in the presence of l-NNA or Indo. In conclusion, the ETB-mediated negative inotropic effect is presumably due to ETB1 stimulation, requires an intact EE, and is mediated by NO and prostaglandins, whereas the ETB-mediated positive inotropic effect, observed when EE was damaged or NO and prostaglandins synthesis inhibited, is presumably due to ETB2 stimulation.


2012 ◽  
Vol 302 (5) ◽  
pp. H1131-H1137 ◽  
Author(s):  
Ana Luísa Pires ◽  
Marta Pinho ◽  
Cristina Maria Sena ◽  
Raquel Seica ◽  
Adelino F. Leite-Moreira

Intermedin (IMD) is a novel vasoactive peptide from the calcitonin gene-related peptide (CGRP) implicated in cardiac regulation, yet the contractile effects of IMD remain controversial, since previous studies in vivo and isolated cardiomyocytes documented contradictory results. We hypothesized cardiac endothelial cells involvement in IMD modulation of cardiac function as an explanation for these opposing observations. With this in mind, we investigated the direct action of increasing concentrations of IMD (10−8 to 10−6M) on myocardial performance parameters in rat left ventricular (LV) papillary muscles with and without endocardial endothelium (EE) and in presence of receptor antagonists and intracellular pathways inhibitors. In LV papillary muscles with intact EE, IMD induced a concentration-dependent negative inotropic action (%decrease relative to baseline, at IMD concentration of 10−6M, active tension of 14 ± 4%, and maximum velocity of tension rise of 10 ± 4%). These effects were blunted by EE removal, AM receptor antagonist (AM22–52), and CGRP receptor antagonist (CGRP8–37). Additionally, nitric oxide (NO) synthase inhibition with NG-nitro-l-arginine (l-NAME) in muscles with and without EE and guanylyl cyclase inhibition with {1 H-[1,2,4]oxadiazole-[4,4-a]-quinoxalin-1-one} not only blunted the negative inotropic action of IMD but also unmasked IMD-positive inotropic effect dependent on CGRP receptor PKA activation. Western blot quantification of phosphorylated cardiac troponin I (P-cTnI) in IMD-treated papillary muscles revealed a significant increase in P-cTnI when compared with untreated muscles, while in l-NAME-pretreated papillary muscles IMD failed to increase P-cTnI. Finally, we found that stimulation of both EE and microvascular endothelial cells with IMD significantly increased NO production by 40 ± 3 and 38 ± 3%, respectively, suggesting the role of cardiac endothelial cells in NO production upon IMD stimulation. Our findings establish IMD negative inotropic effect in isolated myocardium due to NO/cGMP pathway activation with concomitant thin myofilament desensitization by increase in cTnI phosphorylation and provide a coherent explanation for the previously reported contradictory results.


Sign in / Sign up

Export Citation Format

Share Document