isometric force
Recently Published Documents


TOTAL DOCUMENTS

1221
(FIVE YEARS 164)

H-INDEX

77
(FIVE YEARS 7)

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 186
Author(s):  
Maria de Cássia Macedo ◽  
Matheus Almeida Souza ◽  
Kariny Realino Ferreira ◽  
Laura Oliveira Campos ◽  
Igor Sérgio Oliveira Souza ◽  
...  

The objective was to assess the instrumental validity and the test–retest reliability of a low-cost hand-held push dynamometer adapted from a load-cell based hanging scale (tHHD) to collect compressive forces in different ranges of compressive forces. Three independent raters applied 50 pre-established compressions each on the tHHD centered on a force platform in three distinct ranges: ~70 N, ~160 N, ~250 N. Knee isometric strength was also assessed on 19 subjects in two sessions (48 h apart) using the tHHD anchored by an inelastic adjustable strap. Knee extension and flexion were assessed with the participant seated on a chair with the feet resting on the floor, knees, and hips flexed at 90°. The isometric force peaks were recorded and compared. The ICC and the Cronbach’s α showed excellent consistency and agreement for both instrumental validity and test–retest reliability (range: 0.89–0.99), as the correlation and determination coefficients (range: 0.80–0.99). The SEM and the MDC analysis returned adequate low values with a coefficient of variation less than 5%. The Bland–Altman results showed consistency and high levels of agreement. The tHHD is a valid method to assess the knee isometric strength, showing portability, cost-effectiveness, and user-friendly interface to provide an effective form to assess the knee isometric strength.


Author(s):  
Sergio Gurgone ◽  
Daniele Borzelli ◽  
Paolo De Pasquale ◽  
Denise J Berger ◽  
Tommaso Lisini Baldi ◽  
...  

Abstract Objective. Muscle activation patterns in the muscle-to-force null space, i.e., patterns that do not generate task-relevant forces, may provide an opportunity for motor augmentation by allowing to control additional end-effectors simultaneously to natural limbs. Here we tested the feasibility of muscular null space control for augmentation by assessing simultaneous control of natural and extra degrees of freedom. Approach. We instructed eight participants to control translation and rotation of a virtual 3D end-effector by simultaneous generation of isometric force at the hand and null space activity extracted in real-time from the electromyographic signals recorded from 15 shoulder and arm muscles. First, we identified the null space components that each participant could control more naturally by voluntary co-contraction. Then, participants performed several blocks of a reaching and holding task. They displaced an ellipsoidal cursor to reach one of nine targets by generating force, and simultaneously rotated the cursor to match the target orientation by activating null space components. We developed an information-theoretic metric, an index of difficulty defined as the sum of a spatial and a temporal term, to assess individual null space control ability for both reaching and holding. Main Results. On average, participants could reach the targets in most trials already in the first block (72%) and they improved with practice (maximum 93%) but holding performance remained lower (maximum 43%). As there was a high inter-individual variability in performance, we performed a simulation with different spatial and temporal task conditions to estimate those for which each individual participants would have performed best. Significance. Muscular null space control is feasible and may be used to control additional virtual or robotics end-effectors. However, decoding of motor commands must be optimized according to individual null space control ability.


Author(s):  
Mehdi Chlif ◽  
Mohamed Mustapha Ammar ◽  
Noureddine Ben Said ◽  
Levushkin Sergey ◽  
Said Ahmaidi ◽  
...  

This study will evaluate cardiorespiratory and peripheral muscle function and their relationship with subjective dyspnea threshold after the surgical correction of congenital heart disease in children. Thirteen children with surgically repaired congenital heart disease were recruited. Each participant performed an incremental exercise test on a cycle ergometer until exhaustion. Gas exchanges were continuously sampled to measure the maximal aerobic parameters and ventilatory thresholds. The functional capacity of the subjects was assessed with a 6 min walk test. At the end of the exercise test, isokinetic Cybex Norm was used to evaluate the strength and endurance of the knee extensor muscle in the leg. Dyspnea was subjectively scored with a visual analog scale during the last 15 s of each exercise step. Oxygen consumption measured at the dyspnea score/VO2 relationship located at the dyspnea threshold, at which dyspnea suddenly increased. Results: The maximal and submaximal values of the parameters describing the exercise and the peripheral muscular performances were: VO2 Peak: 33.8 ± 8.9 mL·min−1·kg−1; HR: 174 ± 9 b·min−1; VEmax: 65.68 ± 15.9 L·min−1; P max: 117 ± 27 W; maximal voluntary isometric force MVIF: 120.8 ± 41.9 N/m; and time to exhaustion Tlim: 53 ± 21 s. Oxygen consumption measured at the dyspnea threshold was related to VO2 Peak (R2 = 0.74; p < 0.01), Tlim (R2 = 0.78; p < 0.01), and the distance achieved during the 6MWT (R2 = 0.57; p < 0.05). Compared to the theoretical maximal values for the power output, VO2, and HR, the surgical correction did not repair the exercise performance. After the surgical correction of congenital heart disease, exercise performance was impeded by alterations of the cardiorespiratory function and peripheral local factors. A subjective evaluation of the dyspnea threshold is a reliable criterion that allows the prediction of exercise capacity in subjects suffering from congenital heart disease.


2021 ◽  
Vol 23 (1) ◽  
pp. 88
Author(s):  
Kasturi Markandran ◽  
Haiyang Yu ◽  
Weihua Song ◽  
Do Thuy Uyen Ha Lam ◽  
Mufeeda Madathummal ◽  
...  

Heart failure (HF) as a result of myocardial infarction (MI) is a major cause of fatality worldwide. However, the cause of cardiac dysfunction succeeding MI has not been elucidated at a sarcomeric level. Thus, studying the alterations within the sarcomere is necessary to gain insights on the fundamental mechansims leading to HF and potentially uncover appropriate therapeutic targets. Since existing research portrays regulatory light chains (RLC) to be mediators of cardiac muscle contraction in both human and animal models, its role was further explored In this study, a detailed characterisation of the physiological changes (i.e., isometric force, calcium sensitivity and sarcomeric protein phosphorylation) was assessed in an MI mouse model, between 2D (2 days) and 28D post-MI, and the changes were related to the phosphorylation status of RLCs. MI mouse models were created via complete ligation of left anterior descending (LAD) coronary artery. Left ventricular (LV) papillary muscles were isolated and permeabilised for isometric force and Ca2+ sensitivity measurement, while the LV myocardium was used to assay sarcomeric proteins’ (RLC, troponin I (TnI) and myosin binding protein-C (MyBP-C)) phosphorylation levels and enzyme (myosin light chain kinase (MLCK), zipper interacting protein kinase (ZIPK) and myosin phosphatase target subunit 2 (MYPT2)) expression levels. Finally, the potential for improving the contractility of diseased cardiac papillary fibres via the enhancement of RLC phosphorylation levels was investigated by employing RLC exchange methods, in vitro. RLC phosphorylation and isometric force potentiation were enhanced in the compensatory phase and decreased in the decompensatory phase of HF failure progression, respectively. There was no significant time-lag between the changes in RLC phosphorylation and isometric force during HF progression, suggesting that changes in RLC phosphorylation immediately affect force generation. Additionally, the in vitro increase in RLC phosphorylation levels in 14D post-MI muscle segments (decompensatory stage) enhanced its force of isometric contraction, substantiating its potential in HF treatment. Longitudinal observation unveils potential mechanisms involving MyBP-C and key enzymes regulating RLC phosphorylation, such as MLCK and MYPT2 (subunit of MLCP), during HF progression. This study primarily demonstrates that RLC phosphorylation is a key sarcomeric protein modification modulating cardiac function. This substantiates the possibility of using RLCs and their associated enzymes to treat HF.


Author(s):  
Maria de Cássia Macedo ◽  
Matheus Almeida Souza ◽  
Kariny Realino Ferreira ◽  
Laura Oliveira Campos ◽  
Igora Sérgio Oliveira Souza ◽  
...  

The objective was to assess the instrumental validity and the test-retest reliability of a low-cost hand-held push dynamometer adapted from a load-cell based hanging scale (tHHD) to collect compressive forces in different ranges of compressive forces. Three independent raters applied 50 pre-established compressions each on the tHHD centered on a force platform in 3 distinct ranges: ~70 N, ~160 N, ~250 N. Knee isometric strength was also assessed on 19 subjects in two sessions (48h apart) using the tHHD anchored by an inelastic adjustable strap. Knee extension and flexion were assessed with the participant seated on a chair with the feet resting on the floor, knees, and hips flexed at 90&deg;. The isometric force peaks were recorded and compared. The ICC and the Cronbach&rsquo;s &alpha; showed excellent consistency and agreement for both instrumental validity and test-retest reliability, as the correlation and determination coefficients. The SEM and the MDC analysis returned adequate low values with a coefficient of variation less than 5%. The Bland-Altman results showed consistency and high levels of agreement. The tHHD is a valid method to assess the knee isometric strength, showing portability, cost-effectiveness, and user-friendly interface to provide an effective form to assess the knee isometric strength.


2021 ◽  
Vol 22 (24) ◽  
pp. 13585
Author(s):  
Megan Zak ◽  
Bri Kestler ◽  
Trudy Cornwell ◽  
Mark S. Taylor

Uterine contractions prior to 37 weeks gestation can result in preterm labor with significant risk to the infant. Current tocolytic therapies aimed at suppressing premature uterine contractions are largely ineffective and cause serious side effects. Calcium (Ca2+) dependent contractions of uterine smooth muscle are physiologically limited by the opening of membrane potassium (K+) channels. Exploiting such inherent negative feedback mechanisms may offer new strategies to delay labor and reduce risk. Positive modulation of small conductance Ca2+-activated K+ (KCa2.3) channels with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA), effectively decreases uterine contractions. This study investigates whether the receptor agonist oxytocin might solicit KCa2.3 channel feedback that facilitates CyPPA suppression of uterine contractions. Using isometric force myography, we found that spontaneous phasic contractions of myometrial tissue from nonpregnant mice were suppressed by CyPPA and, in the presence of CyPPA, oxytocin failed to augment contractions. In tissues exposed to oxytocin, depletion of internal Ca2+ stores with cyclopiazonic acid (CPA) impaired CyPPA relaxation, whereas blockade of nonselective cation channels (NSCC) using gadolinium (Gd3+) had no significant effect. Immunofluorescence revealed close proximity of KCa2.3 channels and ER inositol trisphosphate receptors (IP3Rs) within myometrial smooth muscle cells. The findings suggest internal Ca2+ stores play a role in KCa2.3-dependent feedback control of uterine contraction and offer new insights for tocolytic therapies.


2021 ◽  
Author(s):  
Terumasa Takahara ◽  
Hidetaka Yamaguchi ◽  
Kazutoshi Seki ◽  
Sho Onodera

AbstractDepression of sensory input during voluntary muscle contractions has been demonstrated using electrophysiological methods in both animals and humans. However, the association between electrophysiological responses of the sensory system and subjective peripheral sensation (SPS) during a voluntary muscle contraction remains unclear. Our aim in this study was to describe the changes in SPS, spinal α-motoneuron excitability (F-wave to M-wave amplitude), and somatosensory evoked potentials (SEPs) during a unilateral pinch-grip task. Outcome variables were measured on the side ipsilateral and contralateral to the muscle contraction, and at rest (control). Participants were 8 healthy men, 20.9±0.8 years of age. The isometric pinch-grip task was performed at 30% of the maximum voluntary isometric force measured for the right and left hand separately. The appearance rate of the F-wave during the task was significantly higher for the ipsilateral (right) hand than for the contralateral (left) hand and control condition. Although there was no difference in F-wave latency between hands and the control condition, the amplitude of the F-wave was significantly higher for the ipsilateral (right) hand than for the contralateral (left) hand and the control condition. There was no difference in the amplitude of the SEP at N20. However, the amplitude at P25 was significantly lower for the ipsilateral (right) hand than for the contralateral (left) hand and the control condition. The accuracy rate of detecting tactile stimulation, evaluated for 20 repetitions using a Semmes–Weinstein monofilament at the sensory threshold for each participant, was significantly lower during the pinch-grip task for both the ipsilateral (right) and contralateral (left) hand compared to the control condition. Overall, our findings show that SPS and neurophysiological parameters were not modulated in parallel during the task, with changes in subjective sensation preceding changes in electrophysiological indices during the motor task. Our findings provide basic information on sensory-motor coordination.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1290
Author(s):  
Ziyi Yang ◽  
Shuxiang Guo ◽  
Hideyuki Hirata ◽  
Masahiko Kawanishi

In this paper, a novel mirror visual feedback-based (MVF) bilateral neurorehabilitation system with surface electromyography (sEMG)-based patient active force assessment was proposed for upper limb motor recovery and improvement of limb inter-coordination. A mirror visual feedback-based human–robot interface was designed to facilitate the bilateral isometric force output training task. To achieve patient active participant assessment, an sEMG signals-based elbow joint isometric force estimation method was implemented into the proposed system for real-time affected side force assessment and participation evaluation. To assist the affected side limb efficiently and precisely, a mirror bilateral control framework was presented for bilateral limb coordination. Preliminary experiments were conducted to evaluate the estimation accuracy of force estimation method and force tracking accuracy of system performance. The experimental results show the proposed force estimation method can efficiently calculate the elbow joint force in real-time, and the affected side limb of patients can be assisted to track output force of the non-paretic side limb for better limb coordination by the proposed bilateral rehabilitation system.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Nao Tokuda ◽  
Daiki Watanabe ◽  
Yuki Ashida ◽  
Iori Kimura ◽  
Azuma Naito ◽  
...  

Synergistic ablation (SA) is widely used to induce muscle hypertrophy in rodent studies. However, it has been demonstrated that SA-induced compensatory hypertrophy induces increases in maximum isometric force that are smaller in magnitude than the increase in muscle cross-sectional area, suggesting a reduction in the specific force production due to intrinsic contractile dysfunction in the hypertrophied fibers. Here, by using the mechanical skinned fibers, we investigated the mechanisms behind the reduction in specific force in the compensatory hypertrophied muscles. Rats had unilateral surgical ablation of the gastrocnemius and soleus muscles to induce the compensatory hypertrophy in the plantaris muscles. Two wk after surgery, the mean fiber diameter was increased by 19% in the SA group compared with the contralateral control (CNT) group. In contrast, compared with the CNT group, both the depolarization-induced force (−51%) and the Ca2+-activated maximum specific force (−32%) were markedly reduced in skinned fibers from the SA group. These deleterious functional alterations were accompanied by decreases in the amount of DHPRα1, RYR, junctophilin 1, and SH3 and cysteine-rich domain 3 (STAC3) in SA muscles. Thus, these data clearly show that SA induces not only an increase in skeletal muscle fiber hypertrophy but also leads to a reduction in the intrinsic contractile dysfunction due to the excitation–contraction uncoupling and impaired force-generating capacity.


Sign in / Sign up

Export Citation Format

Share Document