Interactions of human antibodies, epitope exposure, antibody binding and neutralization of primary isolate HIV-1 virions

AIDS ◽  
2002 ◽  
Vol 16 (18) ◽  
pp. 2409-2417 ◽  
Author(s):  
Lisa A Cavacini ◽  
Mark Duval ◽  
James Robinson ◽  
Marshall R Posner
mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Benjamin von Bredow ◽  
Raiees Andrabi ◽  
Michael Grunst ◽  
Andres G. Grandea ◽  
Khoa Le ◽  
...  

ABSTRACTAs a consequence of their independent evolutionary origins in apes and Old World monkeys, human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency viruses of the SIVsmm/maclineage express phylogenetically and antigenically distinct envelope glycoproteins. Thus, HIV-1 Env-specific antibodies do not typically cross-react with the Env proteins of SIVsmm/macisolates. Here we show that PGT145, a broadly neutralizing antibody to a quaternary epitope at the V2 apex of HIV-1 Env, directs the lysis of SIVsmm/mac-infected cells by antibody-dependent cellular cytotoxicity (ADCC) but does not neutralize SIVsmm/macinfectivity. Amino acid substitutions in the V2 loop of SIVmac239 corresponding to the epitope for PGT145 in HIV-1 Env modulate sensitivity to this antibody. Whereas a substitution in a conserved N-linked glycosylation site (N171Q) eliminates sensitivity to ADCC, a lysine-to-serine substitution in this region (K180S) increases ADCC and renders the virus susceptible to neutralization. These differences in function correlate with an increase in the affinity of PGT145 binding to Env on the surface of virus-infected cells and to soluble Env trimers. To our knowledge, this represents the first instance of an HIV-1 Env-specific antibody that cross-reacts with SIVsmm/macEnv and illustrates how differences in antibody binding affinity for Env can differentiate sensitivity to ADCC from neutralization.IMPORTANCEHere we show that PGT145, a potent broadly neutralizing antibody to HIV-1, directs the lysis of SIV-infected cells by antibody-dependent cellular cytotoxicity but does not neutralize SIV infectivity. This represents the first instance of cross-reactivity of an HIV-1 Env-specific antibody with SIVsmm/macEnv and reveals that antibody binding affinity can differentiate sensitivity to ADCC from neutralization.


2003 ◽  
Vol 77 (22) ◽  
pp. 12057-12066 ◽  
Author(s):  
Yanjie Yi ◽  
Anjali Singh ◽  
Farida Shaheen ◽  
Andrew Louden ◽  
ChuHee Lee ◽  
...  

ABSTRACT Macrophagetropic R5 human immunodeficiency virus type 1 (HIV-1) isolates often evolve into dualtropic R5X4 variants during disease progression. The structural basis for CCR5 coreceptor function has been studied in a limited number of prototype strains and suggests that R5 and R5X4 Envs interact differently with CCR5. However, differences between unrelated viruses may reflect strain-specific factors and do not necessarily represent changes resulting from R5 to R5X4 evolution of a virus in vivo. Here we addressed CCR5 domains involved in fusion for a large set of closely related yet functionally distinct variants within a primary isolate swarm, employing R5 and R5X4 Envs derived from the HIV-1 89.6PI quasispecies. R5 variants of 89.6PI could fuse using either N-terminal or extracellular loop CCR5 sequences in the context of CCR5/CXCR2 chimeras, similar to the unrelated R5 strain JRFL, but R5X4 variants of 89.6PI were highly dependent on the CCR5 N terminus. Similarly, R5 89.6PI variants and isolate JRFL tolerated N-terminal CCR5 deletions, but fusion by most R5X4 variants was markedly impaired. R5 89.6PI Envs also tolerated multiple extracellular domain substitutions, while R5X4 variants did not. In contrast to CCR5 use, fusion by R5X4 variants of 89.6PI was largely independent of the CXCR4 N-terminal region. Thus, R5 and R5X4 species from a single swarm differ in how they interact with CCR5. These results suggest that R5 Envs possess a highly plastic capacity to interact with multiple CCR5 regions and support the concept that viral evolution in vivo results from the emergence of R5X4 variants with the capacity to use the CXCR4 extracellular loops but demonstrate less-flexible interactions with CCR5 that are strongly dependent on the N-terminal region.


2011 ◽  
Vol 24 (4) ◽  
pp. 642-646 ◽  
Author(s):  
José L. Nieva ◽  
Beatriz Apellaniz ◽  
Nerea Huarte ◽  
Maier Lorizate

EBioMedicine ◽  
2014 ◽  
Vol 1 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Susan Zolla-Pazner ◽  
Paul T. Edlefsen ◽  
Morgane Rolland ◽  
Xiang-Peng Kong ◽  
Allan deCamp ◽  
...  

2001 ◽  
Vol 98 (26) ◽  
pp. 15227-15232 ◽  
Author(s):  
C.-B. Zhu ◽  
L. Zhu ◽  
S. Holz-Smith ◽  
T. J. Matthews ◽  
C. H. Chen

Sign in / Sign up

Export Citation Format

Share Document