Anterior Cervical Interbody Fusion with Plate Fixation for Chronic Spondylotic Radiculopathy

1999 ◽  
Vol 10 (3) ◽  
pp. 221
Author(s):  
Paul M. Arnold
2010 ◽  
Vol 12 (4) ◽  
pp. 372-380 ◽  
Author(s):  
Dean G. Karahalios ◽  
Taro Kaibara ◽  
Randall W. Porter ◽  
Udaya K. Kakarla ◽  
Phillip M. Reyes ◽  
...  

Object An interspinous anchor (ISA) provides fixation to the lumbar spine to facilitate fusion. The biomechanical stability provided by the Aspen ISA was studied in applications utilizing an anterior lumbar interbody fusion (ALIF) construct. Methods Seven human cadaveric L3–S1 specimens were tested in the following states: 1) intact; 2) after placing an ISA at L4–5; 3) after ALIF with an ISA; 4) after ALIF with an ISA and anterior screw/plate fixation system; 5) after removing the ISA (ALIF with plate only); 6) after removing the plate (ALIF only); and 7) after applying bilateral pedicle screws and rods. Pure moments (7.5 Nm maximum) were applied in flexion and extension, lateral bending, and axial rotation while recording angular motion optoelectronically. Changes in angulation as well as foraminal height were also measured. Results All instrumentation variances except ALIF alone reduced angular range of motion (ROM) significantly from normal in all directions of loading. The ISA was most effective in limiting flexion and extension (25% of normal) and less effective in reducing lateral bending (71% of normal) and axial rotation (71% of normal). Overall, ALIF with an ISA provided stability that was statistically equivalent to ALIF with bilateral pedicle screws and rods. An ISA-augmented ALIF allowed less ROM than plate-augmented ALIF during flexion, extension, and lateral bending. Use of the ISA resulted in flexion at the index level, with a resultant increase in foraminal height. Compensatory extension at the adjacent levels prevented any significant change in overall sagittal balance. Conclusions When used with ALIF at L4–5, the ISA provides immediate rigid immobilization of the lumbar spine, allowing equivalent ROM to that of a pedicle screw/rod system, and smaller ROM than an anterior plate. When used with ALIF, the ISA may offer an alternative to anterior plate fixation or bilateral pedicle screw/rod constructs.


Neurosurgery ◽  
1983 ◽  
Vol 12 (6) ◽  
pp. 649-653 ◽  
Author(s):  
Alfonso M. Bremer ◽  
Tai Q. Nguyen

Abstract The authors report their experience with the use of a modified method of internal metal plate fixation combined with anterior interbody fusion in six patients with an unstable lower cervical spine. All of the patients had sustained severe cervical spine injuries in accidents. In most of the cases, the operation was carried out at 1 to 4 weeks after injury. The insertion of the metal plate was very simple and maintained the block bone graft in satisfactory position. This alternative method of internal fixation of the cervical spine was not associated with morbidity, allowed very early mobilization, and shortened the hospital stay.


1999 ◽  
Vol 10 (3) ◽  
pp. 215???220 ◽  
Author(s):  
Alberto G. Schneeberger ◽  
Norbert Boos ◽  
Othmar Schwarzenbach ◽  
Max Aebi

2014 ◽  
Vol 20 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Guy R. Fogel ◽  
Rachit D. Parikh ◽  
Stephen I. Ryu ◽  
Alexander W. L. Turner

Object Lumbar interbody fusion is indicated in the treatment of degenerative conditions. Laterally inserted interbody cages significantly decrease range of motion (ROM) compared with other cages. Supplemental fixation options such as lateral plates or spinous process plates have been shown to provide stability and to reduce morbidity. The authors of the current study investigate the in vitro stability of the interbody cage with a combination of lateral and spinous process plate fixation and compare this method to the established bilateral pedicle screw fixation technique. Methods Ten L1–5 specimens were evaluated using multidirectional nondestructive moments (± 7.5 N·m), with a custom 6 degrees-of-freedom spine simulator. Intervertebral motions (ROM) were measured optoelectronically. Each spine was evaluated under the following conditions at the L3–4 level: intact; interbody cage alone (stand-alone); cage supplemented with lateral plate; cage supplemented with ipsilateral pedicle screws; cage supplemented with bilateral pedicle screws; cage supplemented with spinous process plate; and cage supplemented with a combination of lateral plate and spinous process plate. Intervertebral rotations were calculated, and ROM data were normalized to the intact ROM data. Results The stand-alone laterally inserted interbody cage significantly reduced ROM with respect to the intact state in flexion-extension (31.6% intact ROM, p < 0.001), lateral bending (32.5%, p < 0.001), and axial rotation (69.4%, p = 0.002). Compared with the stand-alone condition, addition of a lateral plate to the interbody cage did not significantly alter the ROM in flexion-extension (p = 0.904); however, it was significantly decreased in lateral bending and axial rotation (p < 0.001). The cage supplemented with a lateral plate was not statistically different from bilateral pedicle screws in lateral bending (p = 0.579). Supplemental fixation using a spinous process plate was not significantly different from bilateral pedicle screws in flexion-extension (p = 0.476). The combination of lateral plate and spinous process plate was not statistically different from the cage supplemented with bilateral pedicle screws in all the loading modes (p ≥ 0.365). Conclusions A combination of lateral and spinous process plate fixation to supplement a laterally inserted interbody cage helps achieve rigidity in all motion planes similar to that achieved with bilateral pedicle screws.


2020 ◽  
Vol 20 (10) ◽  
pp. 1618-1628
Author(s):  
Marc Szadkowski ◽  
Henri d'Astorg ◽  
Haroun Bouhali ◽  
Ivan Aleksic ◽  
Sonia Ramos-Pascual ◽  
...  

1999 ◽  
Vol 10 (3) ◽  
pp. 215???220
Author(s):  
Alberto G. Schneeberger ◽  
Norbert Boos ◽  
Othmar Schwarzenbach ◽  
Max Aebi

Sign in / Sign up

Export Citation Format

Share Document