interbody cage
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 39)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Arjan C. Y. Loenen ◽  
Jérôme Noailly ◽  
Keita Ito ◽  
Paul C. Willems ◽  
Jacobus J. Arts ◽  
...  

Introduction: 3D printed trussed titanium interbody cages may deliver bone stimulating mechanobiological strains to cells attached at their surface. The exact size and distribution of these strains may depend on patient-specific factors, but the influence of these factors remains unknown. Therefore, this study aimed to determine patient-specific variations in local strain patterns on the surface of a trussed titanium interbody fusion cage.Materials and Methods: Four patients eligible for spinal fusion surgery with the same cage size were selected from a larger database. For these cases, patient-specific finite element models of the lumbar spine including the same trussed titanium cage were made. Functional dynamics of the non-operated lumbar spinal segments, as well as local cage strains and caudal endplate stresses at the operated segment, were evaluated under physiological extension/flexion movement of the lumbar spine.Results: All patient-specific models revealed physiologically realistic functional dynamics of the operated spine. In all patients, approximately 30% of the total cage surface experienced strain values relevant for preserving bone homeostasis and stimulating bone formation. Mean caudal endplate contact pressures varied up to 10 MPa. Both surface strains and endplate contact pressures varied more between loading conditions than between patients.Conclusions: This study demonstrates the applicability of patient-specific finite element models to quantify the impact of patient-specific factors such as bone density, degenerative state of the spine, and spinal curvature on interbody cage loading. In the future, the same framework might be further developed in order to establish a pipeline for interbody cage design optimizations.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael G. Buontempo ◽  
Nareena Imam ◽  
John Koerner

Author(s):  
Nathaniel Toop ◽  
Connor Gifford ◽  
Rouzbeh Motiei-Langroudi ◽  
Arghavan Farzadi ◽  
Daniel Boulter ◽  
...  

AbstractWhile spinal interbody cage options have proliferated in the past decade, relatively little work has been done to explore the comparative potential of biomaterial technologies in promoting stable fusion. Innovations such as micro-etching and nano-architectural designs have shown purported benefits in in vitro studies, but lack clinical data describing their optimal implementation. Here, we critically assess the pre-clinical data supportive of various commercially available interbody cage biomaterial, topographical, and structural designs. We describe in detail the osteointegrative and osteoconductive benefits conferred by these modifications with a focus on polyetheretherketone (PEEK) and titanium (Ti) interbody implants. Further, we describe the rationale and design for two randomized controlled trials, which aim to address the paucity of clinical data available by comparing interbody fusion outcomes between either PEEK or activated Ti lumbar interbody cages. Utilizing dual-energy computed tomography (DECT), these studies will evaluate the relative implant-bone integration and fusion rates achieved by either micro-etched Ti or standard PEEK interbody devices. Taken together, greater understanding of the relative osseointegration profile at the implant–bone interface of cages with distinct topographies will be crucial in guiding the rational design of further studies and innovations.


2021 ◽  
Vol 8 ◽  
pp. 100081
Author(s):  
Michael Kwok ◽  
Andrew S. Zhang ◽  
Kevin J. DiSilvestro ◽  
J. Andrew Younghein ◽  
Eren O. Kuris ◽  
...  

2021 ◽  
pp. 1-9

OBJECTIVE Low fusion rates and cage subsidence are limitations of lumbar fixation with stand-alone interbody cages. Various approaches to interbody cage placement exist, yet the need for supplemental posterior fixation is not clear from clinical studies. Therefore, as prospective clinical studies are lacking, a comparison of segmental kinematics, cage properties, and load sharing on vertebral endplates is needed. This laboratory investigation evaluates the mechanical stability and biomechanical properties of various interbody fixation techniques by performing cadaveric and finite element (FE) modeling studies. METHODS An in vitro experiment using 7 fresh-frozen human cadavers was designed to test intact spines with 1) stand-alone lateral interbody cage constructs (lateral interbody fusion, LIF) and 2) LIF supplemented with posterior pedicle screw-rod fixation (360° constructs). FE and kinematic data were used to validate a ligamentous FE model of the lumbopelvic spine. The validated model was then used to evaluate the stability of stand-alone LIF, transforaminal lumbar interbody fusion (TLIF), and anterior lumbar interbody fusion (ALIF) cages with and without supplemental posterior fixation at the L4–5 level. The FE models of intact and instrumented cases were subjected to a 400-N compressive preload followed by an 8-Nm bending moment to simulate physiological flexion, extension, bending, and axial rotation. Segmental kinematics and load sharing at the inferior endplate were compared. RESULTS The FE kinematic predictions were consistent with cadaveric data. The range of motion (ROM) in LIF was significantly lower than intact spines for both stand-alone and 360° constructs. The calculated reduction in motion with respect to intact spines for stand-alone constructs ranged from 43% to 66% for TLIF, 67%–82% for LIF, and 69%–86% for ALIF in flexion, extension, lateral bending, and axial rotation. In flexion and extension, the maximum reduction in motion was 70% for ALIF versus 81% in LIF for stand-alone cases. When supplemented with posterior fixation, the corresponding reduction in ROM was 76%–87% for TLIF, 86%–91% for LIF, and 90%–92% for ALIF. The addition of posterior instrumentation resulted in a significant reduction in peak stress at the superior endplate of the inferior segment in all scenarios. CONCLUSIONS Stand-alone ALIF and LIF cages are most effective in providing stability in lateral bending and axial rotation and less so in flexion and extension. Supplemental posterior instrumentation improves stability for all interbody techniques. Comparative clinical data are needed to further define the indications for stand-alone cages in lumbar fusion surgery.


2021 ◽  
Vol Volume 13 ◽  
pp. 281-288
Author(s):  
Steven M Falowski ◽  
Sebastian F Koga ◽  
Trent Northcutt ◽  
Laszlo Garamszegi ◽  
Jeremi Leasure ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 1-7
Author(s):  
Hannah A. Levy ◽  
Goutham R. Yalla ◽  
Brian A. Karamian ◽  
Alexander R. Vaccaro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document