ASPHYXIA NEONATORUM TREATED BY ELECTRICAL STIMULATION OF THE PHRENIC NERVE

1951 ◽  
Vol 6 (6) ◽  
pp. 821
Author(s):  
K. W. CROSS ◽  
P. W. ROBERTS
BMJ ◽  
1951 ◽  
Vol 1 (4714) ◽  
pp. 1043-1048 ◽  
Author(s):  
K. W. Cross ◽  
P. W. Roberts

2003 ◽  
Vol 94 (1) ◽  
pp. 220-226 ◽  
Author(s):  
Weirong Zhang ◽  
Paul W. Davenport

It has been demonstrated that phrenic nerve afferents project to somatosensory cortex, yet the sensory pathways are still poorly understood. This study investigated the neural responses in the thalamic ventroposteriolateral (VPL) nucleus after phrenic afferent stimulation in cats and rats. Activation of VPL neurons was observed after electrical stimulation of the contralateral phrenic nerve. Direct mechanical stimulation of the diaphragm also elicited increased activity in the same VPL neurons that were activated by electrical stimulation of the phrenic nerve. Some VPL neurons responded to both phrenic afferent stimulation and shoulder probing. In rats, VPL neurons activated by inspiratory occlusion also responded to stimulation on phrenic afferents. These results demonstrate that phrenic afferents can reach the VPL thalamus under physiological conditions and support the hypothesis that the thalamic VPL nucleus functions as a relay for the conduction of proprioceptive information from the diaphragm to the contralateral somatosensory cortex.


1987 ◽  
Vol 63 (5) ◽  
pp. 1757-1762 ◽  
Author(s):  
B. Dureuil ◽  
N. Viires ◽  
Y. Nivoche ◽  
M. Fiks ◽  
R. Pariente ◽  
...  

The effects of halothane administration on diaphragm and tibialis anterior (TA) muscle were investigated in 30 anesthetized mechanically ventilated rats. Diaphragmatic strength was assessed in 17 rats by measuring the abdominal pressure (Pab) generated during supramaximal stimulation of the intramuscular phrenic nerve endings at frequencies of 0.5, 30, and 100 Hz. Halothane was administered during 30 min at a constant minimum alveolar concentration (MAC): 0.5, 1, and 1.5 MAC in three groups of five rats. For each MAC, Pab was significantly reduced for all frequencies of stimulation except at 100 Hz during 0.5 MAC halothane exposure. The effects of halothane (0.5, 1, and 1.5 MAC) on diaphragmatic neuromuscular transmission were assessed in five other rats by measuring the integrated electrical activity of the diaphragm (Edi) during electrical stimulation of the phrenic nerve. No change in Edi was observed during halothane exposure. In five other rats TA contraction was studied by measuring the strength of isometric contraction of the muscle during electrical stimulation of its nerve supply at different frequencies (0.5, 30, and 100 Hz). Muscle function was unchanged during administration of halothane in a cumulative fashion from 0.5 to 1.5 MAC. These results demonstrate that halothane does not affect hindlimb muscle function, whereas it had a direct negative inotropic effect on rat diaphragmatic muscle.


2001 ◽  
Vol 90 (4) ◽  
pp. 1570-1576 ◽  
Author(s):  
Jalal M. Abu-Shaweesh ◽  
Ismail A. Dreshaj ◽  
Musa A. Haxhiu ◽  
Richard J. Martin

Stimulation of the superior laryngeal nerve (SLN) results in apnea in animals of different species, the mechanism of which is not known. We studied the effect of the GABAA receptor blocker bicuculline, given intravenously and intracisternally, on apnea induced by SLN stimulation. Eighteen 5- to 10-day-old piglets were studied: bicuculline was administered intravenously to nine animals and intracisternally to nine animals. The animals were anesthetized and then decerebrated, vagotomized, ventilated, and paralyzed. The phrenic nerve responses to four levels of electrical SLN stimulation were measured before and after bicuculline. SLN stimulation caused a significant decrease in phrenic nerve amplitude, phrenic nerve frequency, minute phrenic activity, and inspiratory time ( P < 0.01) that was proportional to the level of electrical stimulation. Increased levels of stimulation were more likely to induce apnea during stimulation that often persisted beyond cessation of the stimulus. Bicuculline, administered intravenously or intracisternally, decreased the SLN stimulation-induced decrease in phrenic nerve amplitude, minute phrenic activity, and phrenic nerve frequency ( P < 0.05). Bicuculline also reduced SLN-induced apnea and duration of poststimulation apnea ( P < 0.05). We conclude that centrally mediated GABAergic pathways are involved in laryngeal stimulation-induced apnea.


Neurosurgery ◽  
1978 ◽  
Vol 2 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Ronald F. Young

Abstract Most neurosurgical patients with permanent partial or complete respiratory insufficiency are managed with a mechanical ventilator and tracheostomy. This method presents many medical, technical, emotional, and social problems. A case report is presented that illustrates the potential usefulness of electrical stimulation of the phrenic nerve (“diaphragm pacing”) as an alternate method of therapy for respiratory insufficiency. This paper outlines the indications for, methods of, and problems with such a system and is intended to make its availability more widely appreciated among neurosurgeons.


Sign in / Sign up

Export Citation Format

Share Document