MALARIA SURVEY IN IRRIGATED REGIONS OF RIO GRANDE RIVER NEW MEXICO

1928 ◽  
Vol 21 (9) ◽  
pp. 737-738
Author(s):  
M A Barber
2016 ◽  
Author(s):  
Travis W. Clow ◽  
◽  
Whitney M. Behr ◽  
Mark Helper ◽  
Peter Gold ◽  
...  

2002 ◽  
Vol 68 (1) ◽  
pp. 161-165 ◽  
Author(s):  
Ryan C. Kuhn ◽  
Channah M. Rock ◽  
Kevin H. Oshima

ABSTRACT Fecal samples were taken from wild ducks on the lower Rio Grande River around Las Cruces, N. Mex., from September 2000 to January 2001. Giardia cysts and Cryptosporidium oocysts were purified from 69 samples by sucrose enrichment followed by cesium chloride (CsCl) gradient centrifugation and were viewed via fluorescent-antibody (FA) staining. For some samples, recovered cysts and oocysts were further screened via PCR to determine the presence of Giardia lamblia and Crytosporidium parvum. The results of this study indicate that 49% of the ducks were carriers of Cryptosporidium, and the Cryptosporidium oocyst concentrations ranged from 0 to 2,182 oocysts per g of feces (mean ± standard deviation, 47.53 ± 270.3 oocysts per g); also, 28% of the ducks were positive for Giardia, and the Giardia cyst concentrations ranged from 0 to 29,293 cysts per g of feces (mean ± standard deviation, 436 ± 3,525.4 cysts per g). Of the 69 samples, only 14 had (oo)cyst concentrations that were above the PCR detection limit. Samples did test positive for Cryptosporidium sp. However, C. parvum and G. lamblia were not detected in any of the 14 samples tested by PCR. Ducks on their southern migration through southern New Mexico were positive for Cryptosporidium and Giardia as determined by FA staining, but C. parvum and G. lamblia were not detected.


2021 ◽  
Vol 2 ◽  
Author(s):  
Sandra Garcia ◽  
Pascale Louvat ◽  
Jerome Gaillardet ◽  
Syprose Nyachoti ◽  
Lin Ma

In semi-arid to arid regions, both anthropogenic sources (urban and agriculture) and deeper Critical Zone (groundwater with long flow paths and water residence times) may play an important role in controlling chemical exports to rivers. Here, we combined two anthropogenic isotope tracers: uranium isotope ratios (234U/238U) and boron isotope ratios (δ11B), with the 87Sr/86Sr ratios to identify and quantify multiple solute (salinity) sources in the Rio Grande river in southern New Mexico and western Texas. The Rio Grande river is a major source of freshwater for irrigation and municipal uses in southwestern United States. There has been a large disagreement about the dominant salinity sources to the Rio Grande and particularly significant sources are of anthropogenic (agriculture practices and shallow groundwater flows, groundwater pumping, and urban developments) and/or geological (natural groundwater upwelling) origins. Between 2014 and 2016, we collected monthly river samples at 15 locations along a 200-km stretch of the Rio Grande river from Elephant Butte Reservoir, New Mexico to El Paso, Texas, as well as water samples from agricultural canals and drains, urban effluents and drains, and groundwater wells. Our study shows that due to the presence of localized and multiple salinity inputs, total dissolved solids (TDS) and isotope ratios of U, B, and Sr in the Rio Grande river show high spatial and temporal variability. Several agricultural, urban, and geological sources of salinity in the Rio Grande watershed have characteristic and distinguishable U, Sr, and B isotope signatures. However, due to the common issue of overlapping signatures as identified by previous tracer studies (such as δ18O, δD, δ34S), no single isotope tracer of U, Sr, or B isotopes was powerful enough to distinguish multiple salinity sources. Here, combining the multiple U, Sr, and B isotope and elemental signatures, we applied a multi-tracer mass balance approach to quantify the relative contributions of water mass from the identified various salinity end members along the 200-km stretch of the Rio Grande during different river flow seasons. Our results show that during irrigation (high river flow) seasons, the Rio Grande had uniform chemical and isotopic compositions, similar to the Elephant Butte reservoir where water is stored and well-mixed, reflecting the dominant contribution from shallow Critical Zone in headwater regions in temperate southern Colorado and northern New Mexico. In non-irrigation (low flow) seasons when the river water is stored at Elephant Butte reservoir, the Rio Grande river at many downstream locations showed heterogeneous chemical and isotopic compositions, reflecting variable inputs from upwelling of groundwater (deeper CZ), displacement of shallow groundwater, agricultural return flows, and urban effluents. Our study highlights the needs of using multi-tracer approach to investigate multiple solutes and salinity sources in rivers with complex geology and human impacts.


1895 ◽  
Vol 27 (10) ◽  
pp. 277-277
Author(s):  
C. H. Tyler Townsend

A number of the bur-like fruits of Glycyrrhiza lepidota, a species of licorice native to Arizona and parts of New Mexico, were collected in the Mesilia Valley of the Rio Grande River, north of Las Cruces, in the fall of 1892. The following May, there were found issued from these burs many specimens of a Bruchid, which was identified at the Agricultural Department in Washington as Bruchus alboscutellatus, Horn. There were also many parasites issued, which were determined by Mr. Ashmead as Bruchophagus mexicanus, Ashm. I am indebted to Mr. Coville for the determination of the plant.


Sign in / Sign up

Export Citation Format

Share Document