cesium chloride
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 26)

H-INDEX

39
(FIVE YEARS 3)

2021 ◽  
pp. 000370282110520
Author(s):  
Oleg Yurchenko ◽  
Tetyana Chernozhyk ◽  
Alexandr Baklanov ◽  
Larisa Baklanova ◽  
Alexander Rebrov ◽  
...  

The use of the sonoluminescence spectroscopy for the determination of main components in concentrated aqueous solution of alkali metal halides is examined. In concentrated RCl-solutions (R=Li, Na, K; C=100–600 g•dm–3) the sonoluminescence intensity is inversely proportional to ultrasound frequency in the range from 2 МHz up to 5 МHz. In the CsCl case the inverse proportionality is disturbed at ultrasound frequencies higher than 3 MHz. This is the limiting value for the accurate analysis of the concentrated solutions of cesium chloride. The increase of initiating ultrasound frequency leads to the decreasing of sensibility of the main component determination in highly concentrated (more than 300 g∙dm–3) natural and technological solutions. Nevertheless, the metrological characteristics of the results of the main substance determination in these solutions improve. The routines of express determination of the main substance in concentrated saline solutions were developed.


2021 ◽  
Vol 9 (10) ◽  
pp. 2105
Author(s):  
Su-Hyeon Kim ◽  
Damilare Adeyemi ◽  
Mi-Kyung Park

Ongoing outbreaks of foodborne diseases remain a significant public health concern. Lytic phages provide promising attributes as biocontrol agents. This study characterized KFS-EC3, a polyvalent and lytic phage, which was isolated from slaughterhouse sewage and purified by cesium chloride density centrifugation. Host range and efficiency of plating analyses revealed that KFS-EC3 is polyvalent and can efficiently infect E. coli O157:H7, Salmonella spp., and Shigella sonnei. KFS-EC3 had a latent time of 20 min and burst size of ~71 phages/infected cell. KFS-EC3 was stable and infectious following storage at a pH range of 3 to 11 and a temperature range of −70°C to 60°C. KFS-EC3 could inhibit E. coli O157:H7 growth by 2 logs up to 52 h even at the lowest MOI of 0.001. Genomic analysis of KFS-EC3 revealed that it consisted of 167,440 bp and 273 ORFs identified as functional genes, without any genes associated with antibiotic resistance, virulence, allergenicity, and lysogenicity. This phage was finally classified into the Tequatrovirus genus of the Myoviridae family. In conclusion, KFS-EC3 could simultaneously infect E. coli O157:H7, S. sonnei, and Salmonella spp. with the lowest MOI values over long periods, suggesting its suitability for simultaneous pathogen control in foods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wolfgang Koelmel ◽  
Jochen Kuper ◽  
Caroline Kisker

AbstractOver the last decades the phase problem in macromolecular x-ray crystallography has become more controllable as methods and approaches have diversified and improved. However, solving the phase problem is still one of the biggest obstacles on the way of successfully determining a crystal structure. To overcome this caveat, we have utilized the anomalous scattering properties of the heavy alkali metal cesium. We investigated the introduction of cesium in form of cesium chloride during the three major steps of protein treatment in crystallography: purification, crystallization, and cryo-protection. We derived a step-wise procedure encompassing a “quick-soak”-only approach and a combined approach of CsCl supplement during purification and cryo-protection. This procedure was successfully applied on two different proteins: (i) Lysozyme and (ii) as a proof of principle, a construct consisting of the PH domain of the TFIIH subunit p62 from Chaetomium thermophilum for de novo structure determination. Usage of CsCl thus provides a versatile, general, easy to use, and low cost phasing strategy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aleksei A. Stepanenko ◽  
Anastasiia O. Sosnovtseva ◽  
Marat P. Valikhov ◽  
Vladimir P. Chekhonin

AbstractTwo-cycle cesium chloride (2 × CsCl) gradient ultracentrifugation is a conventional approach for purifying recombinant adenoviruses (rAds) for research purposes (gene therapy, vaccines, and oncolytic vectors). However, rAds containing the RGD-4C peptide in the HI loop of the fiber knob domain tend to aggregate during 2 × CsCl gradient ultracentrifugation resulting in a low infectious titer yield or even purification failure. An iodixanol-based purification method preventing aggregation of the RGD4C-modified rAds has been proposed. However, the reason explaining aggregation of the RGD4C-modified rAds during 2 × CsCl but not iodixanol gradient ultracentrifugation has not been revealed. In the present study, we showed that rAds with the RGD-4C peptide in the HI loop but not at the C-terminus of the fiber knob domain were prone to aggregate during 2 × CsCl but not iodixanol gradient ultracentrifugation. The cysteine residues with free thiol groups after the RGD motif within the inserted RGD-4C peptide were responsible for formation of the interparticle disulfide bonds under atmospheric oxygen and aggregation of Ad5-delta-24-RGD4C-based rAds during 2 × CsCl gradient ultracentrifugation, which could be prevented using iodixanol gradient ultracentrifugation, most likely due to antioxidant properties of iodixanol. A cysteine-to-glycine substitution of the cysteine residues with free thiol groups (RGD-2C2G) prevented aggregation during 2 × CsCl gradient purification but in coxsackie and adenovirus receptor (CAR)-low/negative cancer cell lines of human and rodent origin, this reduced cytolytic efficacy to the levels observed for a fiber non-modified control vector. However, both Ad5-delta-24-RGD4C and Ad5-delta-24-RGD2C2G were equally effective in the murine immunocompetent CT-2A glioma model due to a primary role of antitumor immune responses in the therapeutic efficacy of oncolytic virotherapy.


2021 ◽  
Author(s):  
Subha Das ◽  
Md Mahfuz Alam ◽  
Rui Zhang ◽  
Sakae Hisano ◽  
Nobuhiro Suzuki

We have previously proposed a new virus lifestyle or yadokari/yadonushi nature exhibited by a positive-sense ssRNA virus, yadokari virus 1 (YkV1), and an unrelated dsRNA virus, yadonushi virus 1 (YnV1) in a phytopathogenic ascomycete, Rosellinia necatrix . We have proposed that YkV1 diverts the YnV1 capsid to trans-encapsidate YkV1 RNA and RNA-dependent RNA polymerase (RdRp) and replicate in the heterocapsid. However, it remains uncertain whether YkV1 replicates using its own RdRp, and whether YnV1 capsid co-packages both YkV1 and YnV1 components. To address these questions, we first took advantage of the reverse genetics tools available for YkV1. Mutations in the GDD RdRp motif, one of the two identifiable functional motifs on the YkV1 polyprotein, abolished its replication competency. Mutations were also introduced in the conserved 2A-like peptide motif, hypothesized to cleave the YkV1 polyprotein co-translationally. Interestingly, the replication proficiency of YkV1 mutants in the host fungus agreed with the cleavage activity of the 2A-like peptide tested using a baculovirus expression system. Cesium chloride equilibrium density gradient centrifugation allowed for the separation of particles, with a subset of YnV1 capsid solely packaging YkV1 dsRNA and RdRp. These results provide proof-of-concept that a capsidless (+)ssRNA virus is hosted by an unrelated dsRNA virus. Importance Viruses typically encode their own capsids that encase their genomes. However, a capsidless (+)ssRNA virus, YkV1, depends on an unrelated dsRNA virus, YnV1, for encapsidation and replication. We have previously shown that YkV1 highjacks the capsid of YnV1 for trans-encapsidation of its own RNA and RdRp. YkV1 was hypothesized to divert the hetero-capsid as the replication site, as is commonly observed for dsRNA viruses. Herein, mutational analyses showed that the RdRp and 2A-like domains on the YkV1 polyprotein are important for its replication. The active RdRp must be cleaved by a 2A-like peptide from the C-proximal protein. Cesium chloride equilibrium density gradient centrifugation allowed for the separation of particles, with YnV1 capsid solely packaging YkV1 dsRNA and RdRp. This study provides proof-of-concept of a virus neo-lifestyle where a (+)ssRNA virus snatches capsids from an unrelated dsRNA virus to replicate with its own RdRp, thereby mimicking the typical dsRNA virus lifestyle.


2021 ◽  
pp. 118099
Author(s):  
Hiromi Kimura ◽  
Go Okada ◽  
Takumi Kato ◽  
Daisuke Nakauchi ◽  
Noriaki Kawaguchi ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 328
Author(s):  
Amanda Carroll-Portillo ◽  
Cristina N. Coffman ◽  
Matthew G. Varga ◽  
Joe Alcock ◽  
Sudha B. Singh ◽  
...  

For decades, bacteriophage purification has followed structured protocols focused on generating high concentrations of phage in manageable volumes. As research moves toward understanding complex phage populations, purification needs have shifted to maximize the amount of phage while maintaining diversity and activity. The effects of standard phage purification procedures such as polyethylene glycol (PEG) precipitation and cesium chloride (CsCl) density gradients on both diversity and activity of a phage population are not known. We have examined the effects of PEG precipitation and CsCl density gradients on a number of known phage (M13, T4, and ΦX 174) of varying structure and size, individually and as mixed sample. Measurement of phage numbers and activity throughout the purification process was performed. We demonstrate that these methods, used routinely to generate “pure” phage samples, are in fact detrimental to retention of phage number and activity; even more so in mixed phage samples. As such, minimal amounts of processing are recommended to introduce less bias and maintain more of a phage population.


Sign in / Sign up

Export Citation Format

Share Document