Lung function studies after homotransplantation, autotransplantation, denervation of the left lung and ligature of right pulmonary artery

1965 ◽  
Vol 3 (5) ◽  
pp. 680
Author(s):  
E. S. Bucherl ◽  
M. Nasseri ◽  
B. Prondzynski
1971 ◽  
Vol 174 (1) ◽  
pp. 34-43 ◽  
Author(s):  
FIKRI ALICAN ◽  
MUKADDER CAYIRLI ◽  
EROL ISIN ◽  
JAMES D. HARDY

2006 ◽  
Vol 16 (1) ◽  
pp. 89-91 ◽  
Author(s):  
Hamish M. Munro ◽  
Andrea M. C. Sorbello ◽  
David G. Nykanen

A baby presented at term with respiratory distress was managed with extracorporeal membrane oxygenation. Bronchoscopy revealed tracheal hypoplasia, complete tracheal rings, and agenesis of the right main bronchus. Echocardiography showed a left pulmonary arterial sling arising from the proximal part of the right pulmonary artery. Cardiac catheterization demonstrated abnormal pulmonary vasculature in the left lung which would have prevented survival, even after surgical repair. Diagnostic catheterization was important in delineating the anatomy, and aided in the decision not to proceed with surgical repair.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna Elisabeth Frick ◽  
Michaela Orlitová ◽  
Arno Vanstapel ◽  
Sofie Ordies ◽  
Sandra Claes ◽  
...  

Abstract Background Primary graft dysfunction (PGD) remains a major obstacle after lung transplantation. Ischemia–reperfusion injury is a known contributor to the development of PGD following lung transplantation. We developed a novel approach to assess the impact of increased pulmonary blood flow in a large porcine single-left lung transplantation model. Materials Twelve porcine left lung transplants were divided in two groups (n = 6, in low- (LF) and high-flow (HF) group). Donor lungs were stored for 24 h on ice, followed by left lung transplantation. In the HF group, recipient animals were observed for 6 h after reperfusion with partially clamping right pulmonary artery to achieve a higher flow (target flow 40–60% of total cardiac output) to the transplanted lung compared to the LF group, where the right pulmonary artery was not clamped. Results Survival at 6 h was 100% in both groups. Histological, functional and biological assessment did not significantly differ between both groups during the first 6 h of reperfusion. injury was also present in the right native lung and showed signs compatible with the pathophysiological hallmarks of ischemia–reperfusion injury. Conclusions Partial clamping native pulmonary artery in large animal lung transplantation setting to study the impact of low versus high pulmonary flow on the development of ischemia reperfusion is feasible. In our study, differential blood flow had no effect on IRI. However, our findings might impact future studies with extracorporeal devices and represent a specific intra-operative problem during bilateral sequential single-lung transplantation.


Author(s):  
Amit A. Deshpande ◽  
Niraj N. Pandey ◽  
Amarinder S. Malhi ◽  
Sanjeev Kumar ◽  
Anita Saxena

2015 ◽  
pp. 218-222
Author(s):  
F. J. Veith ◽  
S. Sinha ◽  
M. Torres ◽  
Ph. Chandler ◽  
S. Bl�mcke ◽  
...  

2018 ◽  
Vol 28 (8) ◽  
pp. 1074-1076 ◽  
Author(s):  
Juan D. Cano Sierra ◽  
Camilo F. Mestra ◽  
Miguel A. Ronderos Dumit

AbstractMowat–Wilson syndrome is a genetic condition due to a mutation in the ZEB2 gene; it affects many systems including the cardiovascular system. The pulmonary arterial sling originates from a failure of development of the proximal portion of the left sixth aortic arch, resulting in an anomalous left pulmonary artery origin from the posterior wall of the right pulmonary artery and the left pulmonary artery crossing to the left lung between the trachea and the oesophagus. We present a 4-month-old infant with Mowat–Wilson syndrome and left pulmonary arterial sling, and discuss the association of these two rare conditions. Pulmonary arterial sling is significantly more frequent in patients with Mowat–Wilson syndrome than in the general population.


Sign in / Sign up

Export Citation Format

Share Document