Evaluation of Descending Spinal Cord Tracts in Patients With Thoracic Cord Lesions Using Motor Evoked Potentials Recorded From the Paravertebral and Lower Limb Muscles

2003 ◽  
Vol 16 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Taku Ogura ◽  
Hiroshi Takeshita ◽  
Hitoshi Hase ◽  
Taturo Hayashida ◽  
Masaki Mori ◽  
...  
2008 ◽  
Vol 105 (5) ◽  
pp. 1527-1532 ◽  
Author(s):  
T. Oya ◽  
B. W. Hoffman ◽  
A. G. Cresswell

This study investigated corticospinal-evoked responses in lower limb muscles during voluntary contractions at varying strengths. Similar investigations have been made on upper limb muscles, where evoked responses have been shown to increase up to ∼50% of maximal force and then decline. We elicited motor-evoked potentials (MEPs) and cervicomedullary motor-evoked potentials (CMEPs) in the soleus (Sol) and medial gastrocnemius (MG) muscles using magnetic stimulation over the motor cortex and cervicomedullary junction during voluntary plantar flexions with the torque ranging from 0 to 100% of a maximal voluntary contraction. Differences between the MEP and CMEP were also investigated to assess whether any changes were occurring at the cortical or spinal levels. In both Sol and MG, MEP and CMEP amplitudes [normalized to maximal M wave (Mmax)] showed an increase, followed by a plateau, over the greater part of the contraction range with responses increasing from ∼0.2 to ∼6% of Mmax for Sol and from ∼0.3 to ∼10% of Mmax for MG. Because both MEPs and CMEPs changed in a similar manner, the observed increase and lack of decrease at high force levels are likely related to underlying changes occurring at the spinal level. The evoked responses in the Sol and MG increase over a greater range of contraction strengths than for upper limb muscles, probably due to differences in the pattern of motor unit recruitment and rate coding for these muscles and the strength of the corticospinal input.


1995 ◽  
Vol 18 (3) ◽  
pp. 276-282 ◽  
Author(s):  
Ina M. Tarkka ◽  
W. Barry McKay ◽  
Arthur M. Sherwood ◽  
Milan R. Dimitrijevic

2007 ◽  
Vol 1179 ◽  
pp. 51-60 ◽  
Author(s):  
S. Beck ◽  
W. Taube ◽  
M. Gruber ◽  
F. Amtage ◽  
A. Gollhofer ◽  
...  

Author(s):  
Akira Saito ◽  
Kento Nakagawa ◽  
Yohei Masugi ◽  
Kimitaka Nakazawa

AbstractVoluntary contraction facilitates corticospinal and spinal reflex circuit excitabilities of the contracted muscle and inhibits spinal reflex circuit excitability of the antagonist. It has been suggested that modulation of spinal reflex circuit excitability in agonist and antagonist muscles during voluntary contraction differs among lower-limb muscles. However, whether the effects of voluntary contraction on the excitabilities of corticospinal and spinal reflex circuits depend on the tested muscles remains unknown. The purpose of this study was to examine inter-muscle differences in modulation of the corticospinal and spinal reflex circuit excitabilities of multiple lower-limb muscles during voluntary contraction. Eleven young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and flexion at low torque levels. Motor evoked potentials (MEPs) and posterior root-muscle reflexes from seven lower-leg and thigh muscles were evoked by transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively, at rest and during weak voluntary contractions. MEP and posterior root-muscle reflex amplitudes of agonists were significantly increased as agonist torque level increased, except for the reflex of the tibialis anterior. MEP amplitudes of antagonists were significantly increased in relation to the agonist torque level, but those of the rectus femoris were slightly depressed during knee flexion. Regarding the posterior root-muscle reflex of the antagonists, the amplitudes of triceps surae and the hamstrings were significantly decreased, but those of the quadriceps femoris were significantly increased as the agonist torque level increased. These results demonstrate that modulation of corticospinal and spinal reflex circuit excitabilities during agonist and antagonist muscle contractions differed among lower-limb muscles.


2014 ◽  
Vol 31 (2) ◽  
pp. e1-e5 ◽  
Author(s):  
Alan D. Legatt ◽  
Stephen J. Fried ◽  
Terry D. Amaral ◽  
Vishal Sarwahi ◽  
Marina Moguilevitch

Spinal Cord ◽  
2012 ◽  
Vol 50 (11) ◽  
pp. 822-826 ◽  
Author(s):  
A Zafeiridis ◽  
A V Vasiliadis ◽  
A Doumas ◽  
N Galanis ◽  
T Christoforidis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document