Conditioning effects of sural nerve stimulation on short and long latency motor evoked potentials in lower limb muscles

Author(s):  
D.L. Wolfe ◽  
K.C. Hayes
2008 ◽  
Vol 105 (5) ◽  
pp. 1527-1532 ◽  
Author(s):  
T. Oya ◽  
B. W. Hoffman ◽  
A. G. Cresswell

This study investigated corticospinal-evoked responses in lower limb muscles during voluntary contractions at varying strengths. Similar investigations have been made on upper limb muscles, where evoked responses have been shown to increase up to ∼50% of maximal force and then decline. We elicited motor-evoked potentials (MEPs) and cervicomedullary motor-evoked potentials (CMEPs) in the soleus (Sol) and medial gastrocnemius (MG) muscles using magnetic stimulation over the motor cortex and cervicomedullary junction during voluntary plantar flexions with the torque ranging from 0 to 100% of a maximal voluntary contraction. Differences between the MEP and CMEP were also investigated to assess whether any changes were occurring at the cortical or spinal levels. In both Sol and MG, MEP and CMEP amplitudes [normalized to maximal M wave (Mmax)] showed an increase, followed by a plateau, over the greater part of the contraction range with responses increasing from ∼0.2 to ∼6% of Mmax for Sol and from ∼0.3 to ∼10% of Mmax for MG. Because both MEPs and CMEPs changed in a similar manner, the observed increase and lack of decrease at high force levels are likely related to underlying changes occurring at the spinal level. The evoked responses in the Sol and MG increase over a greater range of contraction strengths than for upper limb muscles, probably due to differences in the pattern of motor unit recruitment and rate coding for these muscles and the strength of the corticospinal input.


1995 ◽  
Vol 18 (3) ◽  
pp. 276-282 ◽  
Author(s):  
Ina M. Tarkka ◽  
W. Barry McKay ◽  
Arthur M. Sherwood ◽  
Milan R. Dimitrijevic

2007 ◽  
Vol 1179 ◽  
pp. 51-60 ◽  
Author(s):  
S. Beck ◽  
W. Taube ◽  
M. Gruber ◽  
F. Amtage ◽  
A. Gollhofer ◽  
...  

Author(s):  
Akira Saito ◽  
Kento Nakagawa ◽  
Yohei Masugi ◽  
Kimitaka Nakazawa

AbstractVoluntary contraction facilitates corticospinal and spinal reflex circuit excitabilities of the contracted muscle and inhibits spinal reflex circuit excitability of the antagonist. It has been suggested that modulation of spinal reflex circuit excitability in agonist and antagonist muscles during voluntary contraction differs among lower-limb muscles. However, whether the effects of voluntary contraction on the excitabilities of corticospinal and spinal reflex circuits depend on the tested muscles remains unknown. The purpose of this study was to examine inter-muscle differences in modulation of the corticospinal and spinal reflex circuit excitabilities of multiple lower-limb muscles during voluntary contraction. Eleven young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and flexion at low torque levels. Motor evoked potentials (MEPs) and posterior root-muscle reflexes from seven lower-leg and thigh muscles were evoked by transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively, at rest and during weak voluntary contractions. MEP and posterior root-muscle reflex amplitudes of agonists were significantly increased as agonist torque level increased, except for the reflex of the tibialis anterior. MEP amplitudes of antagonists were significantly increased in relation to the agonist torque level, but those of the rectus femoris were slightly depressed during knee flexion. Regarding the posterior root-muscle reflex of the antagonists, the amplitudes of triceps surae and the hamstrings were significantly decreased, but those of the quadriceps femoris were significantly increased as the agonist torque level increased. These results demonstrate that modulation of corticospinal and spinal reflex circuit excitabilities during agonist and antagonist muscle contractions differed among lower-limb muscles.


2019 ◽  
Author(s):  
Jennifer L Davies

AbstractThe aim of this study was to evaluate the extent to which transcranial magnetic stimulation (TMS) can identify discrete cortical representation of lower-limb muscles in healthy individuals. Data were obtained from 16 young healthy adults (12 women, four men; mean [SD] age 23.0 [2.6] years). Motor evoked potentials were recorded from the resting vastus medialis, rectus femoris, vastus lateralis, medial and lateral hamstring, and medial and lateral gastrocnemius muscles on the right side of the body using bipolar surface electrodes. TMS was delivered through a 110-mm double-cone coil at 63 sites over the left hemisphere. Location and size of the cortical representation and the number of discrete peaks were quantified for each muscle. Within the quadriceps muscle group there was a main effect of muscle on anterior-posterior centre of gravity (p = 0.010), but the magnitude of the difference was very small. Within the quadriceps there was a main effect of muscle on medial-lateral hotspot (p = 0.027) and map volume (p = 0.047), but no post-hoc tests were significant. The topography of each lower-limb muscle was complex, displaying multiple peaks that were present across the stimulation grid, and variable across individuals. The results of this study indicate that TMS delivered with a 110-mm double-cone coil could not reliably identify discrete cortical representations of resting lower-limb muscles when responses were measured using bipolar surface electromyography. The characteristics of the cortical representation of lower-limb muscles reported here provide a basis against which to evaluate cortical reorganisation in clinical populations.


Sign in / Sign up

Export Citation Format

Share Document