Three-Dimensional Imaging of Hormone-Secreting Cells and Their Microvessel Environment in Estrogen-Induced Prolactinoma of the Rat Pituitary Gland by Confocal Laser Scanning Microscopy

2001 ◽  
Vol 9 (4) ◽  
pp. 364-370 ◽  
Author(s):  
Johbu Itoh ◽  
Kenji Kawai ◽  
Akihiko Serizawa ◽  
Yukito Yamamoto ◽  
Kenji Ogawa ◽  
...  
2000 ◽  
Vol 48 (4) ◽  
pp. 569-577 ◽  
Author(s):  
J. Itoh ◽  
K. Kawai ◽  
A. Serizawa ◽  
K. Yasumura ◽  
K. Ogawa ◽  
...  

There has been considerable interest in the relationship between hormone-secreting endocrine cells and their microvessels in human pituitary gland. However, microcirculatory networks have rarely been studied in three dimensions (3D). This study was designed to visualize and to reveal the relationship between hormone-secreting endocrine cells and their microvessel environment in 3D, using rat pituitary glands under various (hyper/hypo) experimental conditions by confocal laser scanning microscopy (CLSM). Female adult Wistar rats were used after bilateral adrenalectomy or ACTH administration for 2 weeks. Clear 3D reconstructed images of ACTH cells, the microvessel network and counterstained nuclei were obtained at a maximal focus depth of 1 mm by CLSM without any background noise. In the hyperfunctional state, slender cytoplasmic processes of hypertrophic stellate ACTH cells frequently extended to the microvessels. In the hypofunctional state, ACTH cells appeared atrophic and round with scanty cytoplasm, and cytoplasmic adhesions to microvessel network patterns were inconspicuous. Therefore, 3D reconstructed imaging by CLSM is a useful technique with which to investigate the microvessel environment of hormone-secreting cells and has the potential to reveal dynamic hormone-secreting pathways.


Sign in / Sign up

Export Citation Format

Share Document