Role of the B domain in proteolytic inactivation of activated coagulation factor VIII by activated protein C and activated factor X

2006 ◽  
Vol 17 (5) ◽  
pp. 379-388 ◽  
Author(s):  
Alexey V Khrenov ◽  
Natalya M Ananyeva ◽  
Evgueni L Saenko
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1693-1693
Author(s):  
Fatbardha Varfaj ◽  
Hironao Wakabayashi ◽  
Philip J. Fay

Abstract The essential role of factor VIII in blood coagulation is evident from the bleeding diathesis hemophilia A, which results from a deficiency or defect in factor VIII. Activated factor VIII (factor VIIIa) serves as a cofactor for factor IXa in the factor Xase complex, which activates factor X during the propagation phase of coagulation. Factor VIIIa is a non-covalent heterotrimer consisting of A1, A2 and A3–C1–C2 subunits. Down-regulation of factor Xase is achieved by cofactor inactivation and is thought to occur by a non-proteolytic mechanism involving dissociation of the A2 subunit as well as a proteolytic mechanism catalyzed by activated protein C (APC). APC cleaves the P1 residues Arg336 near the C-terminus of the A1 subunit and Arg562 bisecting the A2 subunit. We recently demonstrated that these cleavages occur in an independent non-sequential fashion, with residue Arg336 being cleaved at a rate ~25-fold faster than Arg562 (Varfaj et al., Biochem J. 2006). While substantial evidence implicates involvement of exosite-directed interactions in the catalytic mechanism of APC, another factor that may contribute to the disparate cleavage rates are residues surrounding the P1 Arg residues. To examine the roles of these sequences in cofactor cleavage, we prepared two factor VIII mutants where the P2–P4 and P1′–P3′ residues surrounding Arg336 (Pro-Gln-Leu and Met-Lys-Asn, respectively) were replaced with those residues surrounding Arg562 (Val-Asp-Gln and Gly-Asn-Gln, respectively), and designated Arg336P2-P4A2 and Arg336P1′-P3′A2. In addition, a single mutant was prepared where the P4-P3′ residues surrounding Arg562 were replaced with those residues surrounding Arg336, and designated Arg562P4-P3′A1. Recombinant, B-domainless factor VIII proteins were stably expressed in BHK cells and purified. Specific activity values measured for Arg336P2-P4A2 and Arg336P1′-P3′A2 mutants were similar to that of wild type (WT) factor VIII, whereas Arg562P4-P3′A1 showed a specific activity value <1% that of WT factor VIII. This latter observation was consistent with the substitution of the A1 residues altering the factor IXa-interactive site contained within A2 residues 558–565. Western blot analysis examining the rates of APC-catalyzed cleavage at Arg336 showed an ~60-fold reduction for the Arg336P2-P4A2 mutant and an ~10-fold reduction for Arg336P1′-P3′A2 mutant compared to cleavage rates observed for WT factor VIIIa. Rates of cleavage at the Arg562 site in these mutants were similar to the WT protein at this site. These results suggest that the native sequence surrounding Arg336 possesses residues more optimal for cleavage by APC than those that surround Arg562 in the A2 subunit. Examination of the Arg562P4-P3′A1 mutant showed a modest increase (~2-fold) in cleavage rate at Arg562, whereas cleavage at the Arg336 was similar to the WT control. Overall, these results suggest a relatively minor role for specific sequences in the cleavage mechanism for APC at the A2 site, whereas a more dominant role for sequence specificity appears necessary for efficient proteolysis at the A1 site, which represents the primary site of attack by APC.


Author(s):  
Lydia Castro-Núñez ◽  
Johanna M. Koornneef ◽  
Mariska G. Rondaij ◽  
Esther Bloem ◽  
Carmen van der Zwaan ◽  
...  

Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1062-1071 ◽  
Author(s):  
SJ Koppelman ◽  
TM Hackeng ◽  
JJ Sixma ◽  
BN Bouma

Protein S is a vitamin K-dependent nonenzymatic anticoagulant protein that acts as a cofactor to activated protein C. Recently it was shown that protein S inhibits the prothrombinase reaction independent of activated protein C. In this study, we show that protein S can also inhibit the intrinsic factor X activation via a specific interaction with factor VIII. In the presence of endothelial cells, the intrinsic activation of factor X was inhibited by protein S with an IC50 value of 0.28 +/- 0.04 mumol/L corresponding to the plasma concentration of protein S. This inhibitory effect was even more pronounced when the intrinsic factor X activation was studied in the presence of activated platelets (IC50 = 0.15 +/- 0.02 mumol/L). When a nonlimiting concentration of phospholipid vesicles was used, the plasma concentration of protein S (300 nmol/L) inhibited the intrinsic factor X activation by 40%. Thrombin-cleaved protein S inhibited the endothelial cell-mediated factor X activation with an IC50 similar to that of native protein S (0.26 +/- 0.02 mumol/L). Protein S in complex with C4b-binding protein inhibited the endothelial cell-mediated factor X activation more potently than protein S alone (IC50 = 0.19 +/- 0.03 mumol/L). Using thrombin activated factor VIII, IC50 values of 0.53 +/- 0.09 mumol/L and 0.46 +/- 0.10 mumol/L were found for native protein S and thrombin-cleaved protein S, respectively. The possible interactions of protein S with factor IXa, phospholipids, and factor VIII were investigated. The enzymatic activity of factor IXa was not affected by protein S, and interaction of protein S with the phospholipid surface could not fully explain the inhibitory effect of protein S on the factor X activation. Using a solid-phase binding assay, we showed a specific, saturable, and reversible binding of protein S to factor VIII with a high affinity. The concentration of protein S where half-maximal binding was reached (B1/2max) was 0.41 +/- 0.06 mumol/L. A similar affinity was found for the interaction of thrombin-cleaved protein S with factor VIII (B1/2max = 0.40 +/- 0.04 mumol/L). The affinity of the complex protein S with C4B-binding protein appeared to be five times higher (B1/2max = 0.07 +/- 0.03 mumol/L). Because the affinities of the interaction of the different forms of protein S with factor VIII correspond to the IC50 values observed for the intrinsic factor X activating complex, the interaction of protein S with factor VIII may explain the inhibitory effect of protein S on the intrinsic factor X activating complex.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3186-3186
Author(s):  
Rinku Majumder

Abstract 3186 Poster Board III-123 Thrombosis is a serious problem in the United States. The overall estimated incidence (annual occurrence) of deep venous thrombosis is 1 episode for every 1000 persons. Protein S, a vitamin K-dependent protein, is one of the natural anticoagulants found in the blood. Deficiency of protein S is most common protein deficiencies associated with familial venous thrombosis There are studies that suggest an association between arterial thrombosis (stroke, heart attack) in patients with protein S deficiency. At this time, the exact role of protein S deficiency and its relative importance in arterial disease is still being explored by physicians and scientists. Protein S is known as a non-enzymatic cofactor of activated Protein C in the inactivation of factors Va and VIIIa, as part of a negative feedback loop to regulate blood coagulation. Plasma coagulation assays in the absence of activated protein C suggest that Protein S may have other anticoagulant role(s). For example, it has been suggested that Protein S down-regulates thrombin generation by stimulating FXa inhibition by the tissue factor pathway inhibitor (Rosing, J., et al., Thromb Res, 2008. 122 Suppl 1: p. S60-3). It has also been proposed that protein S can directly inhibit the intrinsic Xase complex (Takeyama, M., et al.. Br J Haematol, 2008. 143(3): p. 409-20). But the exact mechanism of how Protein S exerts its anticoagulant effect on factor IXa/VIIIa complex is still unclear. In order to determine the role of Protein S as an anticoagulant in the intrinsic Xase Complex, we have used C6PS (a small six carbon chain synthetic Phosphatidylserine (PS) molecule) that does not occur in vivo, but has been used as a powerful tool in demonstrating the regulation of both factors Xa and Va by binding of molecular PS. Soluble lipid binding can offer invaluable insights into events that would be next to impossible to document on a membrane surface which is complicated as it has surface condensation effect and allosteric effects of different factors. We focus here on the conformation changes of the proteins by using C6PS as a tool. We have determined the binding of Protein S with C6PS by using tryptophan fluorescence and observed a stoichiometric Kd of ∼180 μM.We checked for micelles formation under each experimental condition. We have also determined the direct binding of factor IXa with Protein S by using DEGR-IXa ((5-(dimethylamino)1-naphthalenesulfonyl]-glutamylglycylarginyl chloromethyl ketone) in the presence and absence of C6PS. Our results show that the affinity of binding of DEGR-IXa to Protein S in the presence of C6PS is ∼22 fold tighter (Kd ∼15 nM compared to 324 nM) than without C6PS. We also measured the rate of factor X activation by factor IXa with the addition of increasing concentration of C6PS in the presence and absence of Protein S. We observed that Protein S decreased factor IXa mediated factor X activation by 14 fold. We had previously shown that apparent Kd of factor IXa binding to C6PS during factor X activation was ∼125 μM. But addition of Protein S had an effect on the apparent Kd as it increased to 700 μM indicating the affinity of factor IXa towards C6PS was decreased with the addition of Protein S during factor X activation. From these data we can speculate that Protein S induces a conformational change in factor IXa in the presence of C6PS which may affect the interaction of factor IXa with factor VIIIa, thus affecting the intrinsic Xase complex. Using this useful tool (C6PS), we will characterize the anticoagulant role of Protein S in the intrinsic Xase complex which in turn will give us some insights into this important protein which is a crucial target for therapeutic drugs for venous thrombosis. Disclosures No relevant conflicts of interest to declare.


1985 ◽  
Vol 54 (03) ◽  
pp. 650-653 ◽  
Author(s):  
K Mertens ◽  
A van Wijngaarden ◽  
R M Bertina ◽  
J J Veltkamp

SummaryFactor VIII Leiden is a genetic variant of coagulation factor VIII which has been detected in the plasma of a patient with mild haemophilia A. In this patient’s plasma factor VIII procoagulant antigen was in 5-fold excess over factor VIII procoagulant activity, indicating the presence of an abnormal factor VIII molecule. The variant factor VIII was isolated from the patient’s plasma, and its functional properties were studied in a factor X-activating system consisting of purified components. The isolated factor VIII Leiden was normally activated by factor Xa and by thrombin, but the activity of the factor Villa was about 3% of normal. The defect of factor Villa Leiden was studied by comparison with normal factor Villa in kinetic experiments of factor Xa formation. The results support the hypothesis that factor Villa Leiden has a reduced affinity for phospholipid-bound factor IXa in the intrinsic factor X-activating complex.


2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Mariotti Paolo ◽  
Stefano Valerio De ◽  
Stefanini Maria Chiara ◽  
Piastra Marco ◽  
Losavio Francesco Antonio ◽  
...  

1996 ◽  
Vol 95 (2) ◽  
pp. 423-425 ◽  
Author(s):  
Florence Mathonnet ◽  
Philippe De Mazancourt ◽  
Marie‐Hélène Denninger ◽  
Mireille Morot ◽  
Norbert Benattar ◽  
...  

1985 ◽  
Vol 54 (03) ◽  
pp. 654-660 ◽  
Author(s):  
K Mertens ◽  
A van Wijngaarden ◽  
R M Bertina

SummaryThe role of factor VIII in the activation of human factor X by factor IXa, Ca2+ and phospholipid has been investigated. Factor VIII stimulated the factor Xa formation after activation by factor Xa or thrombin; the activity of thrombin-activated factor VIII was about 4-fold that of factor Xa-activated factor VIII. The isolated procoagulant moiety of the factor VIII complex behaved identically to the complete complex, whereas the von Willebrand factor moiety did not participate in the factor Xa formation. Thrombin-activated factor VIII complex (factor Villa) was used to study the effect of factor Villa in kinetic experiments. The results revealed a complex kinetic behaviour, including substrate inhibition and non-linearity of the reaction rate with the enzyme concentration. Using previously obtained insight into the kinetics of factor X activation in the absence of factor VIII, the results were found to support the hypothesis that factor Villa participates in the factor Xa formation in a complex with phospholipid-bound factor IXa; the formation of the factor VUIa-factor IXa complex then increases the catalytic efficiency of the factor IXa by 500-fold.


Sign in / Sign up

Export Citation Format

Share Document