cellular uptake
Recently Published Documents


TOTAL DOCUMENTS

3640
(FIVE YEARS 822)

H-INDEX

139
(FIVE YEARS 17)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 250
Author(s):  
Evren Gundogdu ◽  
Emine-Selin Demir ◽  
Meliha Ekinci ◽  
Emre Ozgenc ◽  
Derya Ilem-Ozdemir ◽  
...  

Imatinib (IMT) is a tyrosine kinase enzyme inhibitor and extensively used for the treatment of gastrointestinal stromal tumors (GISTs). A nanostructured lipid carrier system (NLCS) containing IMT was developed by using emulsification–sonication methods. The characterization of the developed formulation was performed in terms of its particle size, polydispersity index (PDI), zeta potential, entrapment efficiency, loading capacity, sterility, syringeability, stability, in vitro release kinetics with mathematical models, cellular uptake studies with flow cytometry, fluorescence microscopy and cytotoxicity for CRL-1739 cells. The particle size, PDI, loading capacity and zeta potential of selected NLCS (F16-IMT) were found to be 96.63 ± 1.87 nm, 0.27 ± 0.15, 96.49 ± 1.46% and −32.7 ± 2.48 mV, respectively. F16-IMT was found to be stable, thermodynamic, sterile and syringeable through an 18 gauze needle. The formulation revealed a Korsmeyer–Peppas drug release model of 53% at 8 h, above 90% of cell viability, 23.61 µM of IC50 and induction of apoptosis in CRL-1739 cell lines. In the future, F16-IMT can be employed to treat GISTs. A small amount of IMT loaded into the NLCSs will be better than IMT alone for therapy for GISTs. Consequently, F16-IMT could prove to be useful for effective GIST treatment.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Peng Zhang ◽  
Daoyuan Chen ◽  
Lin Li ◽  
Kaoxiang Sun

AbstractSurface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems. Graphical Abstract


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuan Rui ◽  
David R. Wilson ◽  
Stephany Y. Tzeng ◽  
Hannah M. Yamagata ◽  
Deepti Sudhakar ◽  
...  

2022 ◽  
Author(s):  
Mayuko Itaya ◽  
Taiki Miyazawa ◽  
Saoussane Khalifa ◽  
Naoki Shimizu ◽  
Kiyotaka Nakagawa

Based on the free drug hypothesis, we hypothesized that food compounds that bind stronger to BSA than CUR inhibit the binding between BSA and CUR, and that this results in...


2022 ◽  
Author(s):  
Libing Fu ◽  
Bingyang Shi ◽  
Shihui Wen ◽  
Marco Morsch ◽  
Guoying Wang ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 2073-2083
Author(s):  
Kamilia Qudsiani ◽  
Sutriyo Sutriyo ◽  
Ratika Rahmasari

Nucleoside analogue antiviral remdesivir works by inhibiting the RNA-dependent RNA polymerase enzyme and terminating the viral replication. Currently, remdesivir is under a clinical trial for its activity against SARS-CoV-2. In the blood, remdesivir will undergo an enzymatic reaction to become monophosphate analogue form which is difficult to penetrate into the cell membrane. PAMAM (polyamidoamine) dendrimer is a good carrier to encapsulate remdesivir as a water-insoluble drug (0,339 mg/mL). Entrapment of remdesivir in the PAMAM cavity avoided remdesivir molecules to not undergo the enzymatic reactions. This study aimed to synthesize, characterize and evaluate cellular uptake of PAMAM-Remdesivir conjugate. PAMAM-Remdesivir was prepared with various stirring times (3, 6, 12, 24, and 48 hours). The conjugates were characterized to observe the size and particle distribution using Particle Size Analyzer, encapsulating efficiency using UV-Vis Spectroscopy, interaction between PAMAM and remdesivir particle using Fourier Transform Infrared Spectroscopy and cellular uptake of PAMAM-RDV using Fluorescence Microscope. The optimized stirring time of PAMAM-Remdesivir conjugate was 24 hours wich resulted the particles charge of + 23,07 mV of zeta potential, 1008 nm of particle size, 0,730 of PDI, and 69% entrapment efficiency. In addition, the FTIR analysis showed that remdesivir molecules successfully conjugated to PAMAM. Thus, through strring optimization time, the remdesivir molecules were successfully entrapped to PAMAM cavity. The cellular uptake in Vero Cell of PAMAM-RDV conjugated fluorescein isothiocyanate was observed with fluorescence microscope and had a stronger intensity than remdesivir only solution.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 86
Author(s):  
Szilvia Veszelka ◽  
Mária Mészáros ◽  
Gergő Porkoláb ◽  
Anikó Szecskó ◽  
Nóra Kondor ◽  
...  

Nanosized drug delivery systems targeting transporters of the blood-brain barrier (BBB) are promising carriers to enhance the penetration of therapeutics into the brain. The expression of solute carriers (SLC) is high and shows a specific pattern at the BBB. Here we show that targeting ligands ascorbic acid, leucine and glutathione on nanoparticles elevated the uptake of albumin cargo in cultured primary rat brain endothelial cells. Moreover, we demonstrated the ability of the triple-targeted nanovesicles to deliver their cargo into midbrain organoids after crossing the BBB model. The cellular uptake was temperature- and energy-dependent based on metabolic inhibition. The process was decreased by filipin and cytochalasin D, indicating that the cellular uptake of nanoparticles was partially mediated by endocytosis. The uptake of the cargo encapsulated in triple-targeted nanoparticles increased after modification of the negative zeta potential of endothelial cells by treatment with a cationic lipid or after cleaving the glycocalyx with an enzyme. We revealed that targeted nanoparticles elevated plasma membrane fluidity, indicating the fusion of nanovesicles with endothelial cell membranes. Our data indicate that labeling nanoparticles with three different ligands of multiple transporters of brain endothelial cells can promote the transfer and delivery of molecules across the BBB.


Sign in / Sign up

Export Citation Format

Share Document