scholarly journals The Effect of Microphone Placement on Interaural Level Differences and Sound Localization Across the Horizontal Plane in Bilateral Cochlear Implant Users

2016 ◽  
Vol 37 (5) ◽  
pp. e341-e345 ◽  
Author(s):  
Heath G. Jones ◽  
Alan Kan ◽  
Ruth Y. Litovsky
2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Tim Fischer ◽  
Christoph Schmid ◽  
Martin Kompis ◽  
Georgios Mantokoudis ◽  
Marco Caversaccio ◽  
...  

Author(s):  
Maike Klingel ◽  
Bernhard Laback

AbstractNormal-hearing (NH) listeners rely on two binaural cues, the interaural time (ITD) and level difference (ILD), for azimuthal sound localization. Cochlear-implant (CI) listeners, however, rely almost entirely on ILDs. One reason is that present-day clinical CI stimulation strategies do not convey salient ITD cues. But even when presenting ITDs under optimal conditions using a research interface, ITD sensitivity is lower in CI compared to NH listeners. Since it has recently been shown that NH listeners change their ITD/ILD weighting when only one of the cues is consistent with visual information, such reweighting might add to CI listeners’ low perceptual contribution of ITDs, given their daily exposure to reliable ILDs but unreliable ITDs. Six bilateral CI listeners completed a multi-day lateralization training visually reinforcing ITDs, flanked by a pre- and post-measurement of ITD/ILD weights without visual reinforcement. Using direct electric stimulation, we presented 100- and 300-pps pulse trains at a single interaurally place-matched electrode pair, conveying ITDs and ILDs in various spatially consistent and inconsistent combinations. The listeners’ task was to lateralize the stimuli in a virtual environment. Additionally, ITD and ILD thresholds were measured before and after training. For 100-pps stimuli, the lateralization training increased the contribution of ITDs slightly, but significantly. Thresholds were neither affected by the training nor correlated with weights. For 300-pps stimuli, ITD weights were lower and ITD thresholds larger, but there was no effect of training. On average across test sessions, adding azimuth-dependent ITDs to stimuli containing ILDs increased the extent of lateralization for both 100- and 300-pps stimuli. The results suggest that low-rate ITD cues, robustly encoded with future CI systems, may be better exploitable for sound localization after increasing their perceptual weight via training.


2021 ◽  
Vol 25 ◽  
pp. 233121652110181
Author(s):  
Taylor A. Bakal ◽  
Kristina DeRoy Milvae ◽  
Chen Chen ◽  
Matthew J. Goupell

Speech understanding in noise is poorer in bilateral cochlear-implant (BICI) users compared to normal-hearing counterparts. Independent automatic gain controls (AGCs) may contribute to this because adjusting processor gain independently can reduce interaural level differences that BICI listeners rely on for bilateral benefits. Bilaterally linked AGCs may improve bilateral benefits by increasing the magnitude of interaural level differences. The effects of linked AGCs on bilateral benefits (summation, head shadow, and squelch) were measured in nine BICI users. Speech understanding for a target talker at 0° masked by a single talker at 0°, 90°, or −90° azimuth was assessed under headphones with sentences at five target-to-masker ratios. Research processors were used to manipulate AGC type (independent or linked) and test ear (left, right, or both). Sentence recall was measured in quiet to quantify individual interaural asymmetry in functional performance. The results showed that AGC type did not significantly change performance or bilateral benefits. Interaural functional asymmetries, however, interacted with ear such that greater summation and squelch benefit occurred when there was larger functional asymmetry, and interacted with interferer location such that smaller head shadow benefit occurred when there was larger functional asymmetry. The larger benefits for those with larger asymmetry were driven by improvements from adding a better-performing ear, rather than a true binaural-hearing benefit. In summary, linked AGCs did not significantly change bilateral benefits in cases of speech-on-speech masking with a single-talker masker, but there was also no strong detriment across a range of target-to-masker ratios, within a small and diverse BICI listener population.


Author(s):  
Tim Fischer ◽  
Christoph Schmid ◽  
Martin Kompis ◽  
Georgios Mantokoudis ◽  
Marco Caversaccio ◽  
...  

AbstractObjectivesTo compare the sound-source localization, discrimination and tracking performance of bilateral cochlear implant users with omnidirectional (OMNI) and pinna-imitating (PI) microphone directionality modes.DesignTwelve experienced bilateral cochlear implant users participated in the study. Their audio processors were fitted with two different programs featuring either the OMNI or PI mode. Each subject performed static and dynamic sound field spatial hearing tests in the horizontal plane. The static tests consisted of an absolute sound localization test and a minimum audible angle (MAA) test, which was measured at 8 azimuth directions. Dynamic sound tracking ability was evaluated by the subject correctly indicating the direction of a moving stimulus along two circular paths around the subject.ResultsPI mode led to statistically significant sound localization and discrimination improvements. For static sound localization, the greatest benefit was a reduction in the number of front-back confusions. The front-back confusion rate was reduced from 47% with OMNI mode to 35% with PI mode (p = 0.03). The ability to discriminate sound sources at the sides was only possible with PI mode. The MAA value for the sides decreased from a 75.5 to a 37.7-degree angle when PI mode was used (p < 0.001). Furthermore, a non-significant trend towards an improvement in the ability to track sound sources was observed for both trajectories tested (p = 0.34 and p = 0.27).ConclusionsOur results demonstrate that PI mode can lead to improved spatial hearing performance in bilateral cochlear implant users, mainly as a consequence of improved front-back discrimination with PI mode.


2021 ◽  
Author(s):  
Alan Archer-Boyd ◽  
Robert P. Carlyon

We simulated the effect of several automatic gain control (AGC) and AGC-like systems and head movement on the output levels, and resulting interaural level differences (ILDs) produced by bilateral cochlear-implant (CI) processors. The simulated AGC systems included unlinked AGCs with a range of parameter settings, linked AGCs, and two proprietary multi-channel systems used in contemporary CIs. The results show that over the range of values used clinically, the parameters that most strongly affect dynamic ILDs are the release time and compression ratio. Linking AGCs preserves ILDs at the expense of monaural level changes and, possibly, comfortable listening level. Multichannel AGCs can whiten output spectra, and/or distort the dynamic changes in ILD that occur during and after head movement. We propose that an unlinked compressor with a ratio of approximately 3:1 and a release time of 300-500 ms can preserve the shape of dynamic ILDs, without causing large spectral distortions or sacrificing listening comfort.


2014 ◽  
Vol 35 (6) ◽  
pp. 633-640 ◽  
Author(s):  
Michael F. Dorman ◽  
Louise Loiselle ◽  
Josh Stohl ◽  
William A. Yost ◽  
Anthony Spahr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document