bilateral cochlear implant
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 41)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Maike Klingel ◽  
Bernhard Laback

AbstractNormal-hearing (NH) listeners rely on two binaural cues, the interaural time (ITD) and level difference (ILD), for azimuthal sound localization. Cochlear-implant (CI) listeners, however, rely almost entirely on ILDs. One reason is that present-day clinical CI stimulation strategies do not convey salient ITD cues. But even when presenting ITDs under optimal conditions using a research interface, ITD sensitivity is lower in CI compared to NH listeners. Since it has recently been shown that NH listeners change their ITD/ILD weighting when only one of the cues is consistent with visual information, such reweighting might add to CI listeners’ low perceptual contribution of ITDs, given their daily exposure to reliable ILDs but unreliable ITDs. Six bilateral CI listeners completed a multi-day lateralization training visually reinforcing ITDs, flanked by a pre- and post-measurement of ITD/ILD weights without visual reinforcement. Using direct electric stimulation, we presented 100- and 300-pps pulse trains at a single interaurally place-matched electrode pair, conveying ITDs and ILDs in various spatially consistent and inconsistent combinations. The listeners’ task was to lateralize the stimuli in a virtual environment. Additionally, ITD and ILD thresholds were measured before and after training. For 100-pps stimuli, the lateralization training increased the contribution of ITDs slightly, but significantly. Thresholds were neither affected by the training nor correlated with weights. For 300-pps stimuli, ITD weights were lower and ITD thresholds larger, but there was no effect of training. On average across test sessions, adding azimuth-dependent ITDs to stimuli containing ILDs increased the extent of lateralization for both 100- and 300-pps stimuli. The results suggest that low-rate ITD cues, robustly encoded with future CI systems, may be better exploitable for sound localization after increasing their perceptual weight via training.


2021 ◽  
Vol 150 (4) ◽  
pp. A338-A339
Author(s):  
Stephen R. Dennison ◽  
Tanvi Thakkar ◽  
Alan Kan ◽  
Mahan Azadpour ◽  
Mario A. Svirsky ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Aurélie Coudert ◽  
Valérie Gaveau ◽  
Julie Gatel ◽  
Grégoire Verdelet ◽  
Romeo Salemme ◽  
...  

2021 ◽  
Author(s):  
Alan Archer-Boyd ◽  
Robert P. Carlyon

We simulated the effect of several automatic gain control (AGC) and AGC-like systems and head movement on the output levels, and resulting interaural level differences (ILDs) produced by bilateral cochlear-implant (CI) processors. The simulated AGC systems included unlinked AGCs with a range of parameter settings, linked AGCs, and two proprietary multi-channel systems used in contemporary CIs. The results show that over the range of values used clinically, the parameters that most strongly affect dynamic ILDs are the release time and compression ratio. Linking AGCs preserves ILDs at the expense of monaural level changes and, possibly, comfortable listening level. Multichannel AGCs can whiten output spectra, and/or distort the dynamic changes in ILD that occur during and after head movement. We propose that an unlinked compressor with a ratio of approximately 3:1 and a release time of 300-500 ms can preserve the shape of dynamic ILDs, without causing large spectral distortions or sacrificing listening comfort.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Javier Badajoz-Davila ◽  
Jörg M. Buchholz

2021 ◽  
Author(s):  
Matthew J Goupell ◽  
Jack H Noble ◽  
Sandeep A Phatak ◽  
Elizabeth Kolberg ◽  
Miranda Cleary ◽  
...  

Hypothesis: We hypothesized that the bilateral cochlear-implant (BI-CI) users would have a range of interaural insertion-depth mismatch because of different physical placements or characteristics of the arrays, but less than half of electrodes would have less than 75° or 3 mm of interaural insertion-depth mismatch. We also hypothesized that interaural insertion-depth mismatch would be more prevalent nearer the apex, when electrodes were located outside of scala tympani (i.e., possible interaural scalar mismatch), and when the arrays were a mix of pre-curved and straight types. Background: Brainstem neurons in the superior olivary complex are exquisitely sensitive to interaural differences, the cues to sound localization. These binaurally sensitive neurons rely on interaurally place-of-stimulation-matched inputs at the periphery. BI-CI users may have interaural differences in insertion depth and scalar location, causing interaural place-of-stimulation mismatch that impairs binaural abilities. Methods: Insertion depths and scalar locations were calculated from temporal-bone computed-tomography (CT) scans of 107 BI-CI users (27 Advanced Bionics, 62 Cochlear, and 18 Med-El). Each subject had either both pre-curved, both straight, or one of each type of array (mixed). Results: The median interaural insertion-depth mismatch was 23.4° or 1.3 mm. Relatively large interaural insertion-depth mismatch sufficient to disrupt binaural processing occurred for about 15% of electrode pairs [defined as >75° (13.0% of electrode pairs) or >3 mm (19.0% of electrode pairs)]. There was a significant three-way interaction of insertion depth, scalar location, and array type. Interaural insertion-depth mismatch was most prevalent when electrode pairs were more apically located, electrode pairs had interaural scalar mismatch (i.e., one in Scala Tympani, one in Scala Vestibuli), and when the arrays were both pre-curved. Conclusion: Large interaural insertion-depth mismatch can occur in BI-CI users. For new BI-CI users, improved surgical techniques to avoid interaural insertion-depth and scalar mismatch is recommended. For existing BI-CI users with interaural insertion-depth mismatch, interaural alignment of clinical frequency allocation tables by an audiologist might remediate any negative consequences to spatial-hearing abilities.


Sign in / Sign up

Export Citation Format

Share Document