scholarly journals Effects of Spectral Resolution and Frequency Mismatch on Speech Understanding and Spatial Release From Masking in Simulated Bilateral Cochlear Implants

2020 ◽  
Vol 41 (5) ◽  
pp. 1362-1371 ◽  
Author(s):  
Kevin Xu ◽  
Shelby Willis ◽  
Quinton Gopen ◽  
Qian-Jie Fu
2018 ◽  
Vol 61 (3) ◽  
pp. 752-761 ◽  
Author(s):  
Timothy J. Davis ◽  
René H. Gifford

PurposeThe primary purpose of this study was to derive spatial release from masking (SRM) performance-azimuth functions for bilateral cochlear implant (CI) users to provide a thorough description of SRM as a function of target/distracter spatial configuration. The secondary purpose of this study was to investigate the effect of the microphone location for SRM in a within-subject study design.MethodSpeech recognition was measured in 12 adults with bilateral CIs for 11 spatial separations ranging from −90° to +90° in 20° steps using an adaptive block design. Five of the 12 participants were tested with both the behind-the-ear microphones and a T-mic configuration to further investigate the effect of mic location on SRM.ResultsSRM can be significantly affected by the hemifield origin of the distracter stimulus—particularly for listeners with interaural asymmetry in speech understanding. The greatest SRM was observed with a distracter positioned 50° away from the target. There was no effect of mic location on SRM for the current experimental design.ConclusionOur results demonstrate that the traditional assessment of SRM with a distracter positioned at 90° azimuth may underestimate maximum performance for individuals with bilateral CIs.


2018 ◽  
Vol 39 (5) ◽  
pp. 895-905 ◽  
Author(s):  
Matthew J. Goupell ◽  
Corey A. Stoelb ◽  
Alan Kan ◽  
Ruth Y. Litovsky

2018 ◽  
Vol 27 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Kostas Kokkinakis

PurposeThe purpose of this study was to investigate whether bilateral cochlear implant (CI) listeners who are fitted with clinical processors are able to benefit from binaural advantages under reverberant conditions. Another aim of this contribution was to determine whether the magnitude of each binaural advantage observed inside a highly reverberant environment differs significantly from the magnitude measured in a near-anechoic environment.MethodTen adults with postlingual deafness who are bilateral CI users fitted with either Nucleus 5 or Nucleus 6 clinical sound processors (Cochlear Corporation) participated in this study. Speech reception thresholds were measured in sound field and 2 different reverberation conditions (0.06 and 0.6 s) as a function of the listening condition (left, right, both) and the noise spatial location (left, front, right).ResultsThe presence of the binaural effects of head-shadow, squelch, summation, and spatial release from masking in the 2 different reverberation conditions tested was determined using nonparametric statistical analysis. In the bilateral population tested, when the ambient reverberation time was equal to 0.6 s, results indicated strong positive effects of head-shadow and a weaker spatial release from masking advantage, whereas binaural squelch and summation contributed no statistically significant benefit to bilateral performance under this acoustic condition. These findings are consistent with those of previous studies, which have demonstrated that head-shadow yields the most pronounced advantage in noise. The finding that spatial release from masking produced little to almost no benefit in bilateral listeners is consistent with the hypothesis that additive reverberation degrades spatial cues and negatively affects binaural performance.ConclusionsThe magnitude of 4 different binaural advantages was measured on the same group of bilateral CI subjects fitted with clinical processors in 2 different reverberation conditions. The results of this work demonstrate the impeding properties of reverberation on binaural speech understanding. In addition, results indicate that CI recipients who struggle in everyday listening environments are also more likely to benefit less in highly reverberant environments from their bilateral processors.


2018 ◽  
Vol 61 (2) ◽  
pp. 428-435 ◽  
Author(s):  
Navin Viswanathan ◽  
Kostas Kokkinakis ◽  
Brittany T. Williams

Purpose The purpose of this study was to evaluate whether listeners with normal hearing perceiving noise-vocoded speech-in-speech demonstrate better intelligibility of target speech when the background speech was mismatched in language (linguistic release from masking [LRM]) and/or location (spatial release from masking [SRM]) relative to the target. We also assessed whether the spectral resolution of the noise-vocoded stimuli affected the presence of LRM and SRM under these conditions. Method In Experiment 1, a mixed factorial design was used to simultaneously manipulate the masker language (within-subject, English vs. Dutch), the simulated masker location (within-subject, right, center, left), and the spectral resolution (between-subjects, 6 vs. 12 channels) of noise-vocoded target–masker combinations presented at +25 dB signal-to-noise ratio (SNR). In Experiment 2, the study was repeated using a spectral resolution of 12 channels at +15 dB SNR. Results In both experiments, listeners' intelligibility of noise-vocoded targets was better when the background masker was Dutch, demonstrating reliable LRM in all conditions. The pattern of results in Experiment 1 was not reliably different across the 6- and 12-channel noise-vocoded speech. Finally, a reliable spatial benefit (SRM) was detected only in the more challenging SNR condition (Experiment 2). Conclusion The current study is the first to report a clear LRM benefit in noise-vocoded speech-in-speech recognition. Our results indicate that this benefit is available even under spectrally degraded conditions and that it may augment the benefit due to spatial separation of target speech and competing backgrounds.


Sign in / Sign up

Export Citation Format

Share Document