scholarly journals Spatial release from masking in children with normal hearing and with bilateral cochlear implants: Effect of interferer asymmetry

2012 ◽  
Vol 132 (1) ◽  
pp. 380-391 ◽  
Author(s):  
Sara M. Misurelli ◽  
Ruth Y. Litovsky
Author(s):  
Marloes Sparreboom ◽  
Sebastián Ausili ◽  
Martijn J. H. Agterberg ◽  
Emmanuel A. M. Mylanus

Purpose This study aimed to gain more insight into the primary auditory abilities of children with significant residual hearing in order to improve decision making when choosing between bimodal fitting or sequential bilateral cochlear implantation. Method Sound localization abilities, spatial release of masking, and fundamental frequency perception were tested. Nine children with bimodal fitting and seven children with sequential bilateral cochlear implants were included in the study. As a reference, 15 children with normal hearing and two children with simultaneous bilateral cochlear implants were included. Results On all outcome measures, the implanted children performed worse than the normal hearing children. For high-frequency localization, children with sequential bilateral cochlear implants performed significantly better than children with bimodal fitting. Compared to children with normal hearing, the left–right asymmetry in spatial release of masking was significant. When the implant was hindered by noise, bimodally fitted children obtained significantly lower spatial release of masking compared to when the hearing aid was hindered by noise. Overall, the larger the left–right asymmetry in spatial release of masking, the poorer the localization skills. No significant differences were found in fundamental frequency perception between the implant groups. Conclusions The data hint to an advantage of bilateral implantation over bimodal fitting. The extent of asymmetry in spatial release of masking is a promising tool for decision making when choosing whether to continue with the hearing aid or to provide a second cochlear implant in children with significant residual hearing.


2018 ◽  
Vol 61 (3) ◽  
pp. 752-761 ◽  
Author(s):  
Timothy J. Davis ◽  
René H. Gifford

PurposeThe primary purpose of this study was to derive spatial release from masking (SRM) performance-azimuth functions for bilateral cochlear implant (CI) users to provide a thorough description of SRM as a function of target/distracter spatial configuration. The secondary purpose of this study was to investigate the effect of the microphone location for SRM in a within-subject study design.MethodSpeech recognition was measured in 12 adults with bilateral CIs for 11 spatial separations ranging from −90° to +90° in 20° steps using an adaptive block design. Five of the 12 participants were tested with both the behind-the-ear microphones and a T-mic configuration to further investigate the effect of mic location on SRM.ResultsSRM can be significantly affected by the hemifield origin of the distracter stimulus—particularly for listeners with interaural asymmetry in speech understanding. The greatest SRM was observed with a distracter positioned 50° away from the target. There was no effect of mic location on SRM for the current experimental design.ConclusionOur results demonstrate that the traditional assessment of SRM with a distracter positioned at 90° azimuth may underestimate maximum performance for individuals with bilateral CIs.


2019 ◽  
Vol 145 (4) ◽  
pp. 2498-2511 ◽  
Author(s):  
Keng Moua ◽  
Alan Kan ◽  
Heath G. Jones ◽  
Sara M. Misurelli ◽  
Ruth Y. Litovsky

Sign in / Sign up

Export Citation Format

Share Document