vocoded speech
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 35)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Na Xu ◽  
Baotian Zhao ◽  
Lu Luo ◽  
Kai Zhang ◽  
Xiaoqiu Shao ◽  
...  

The envelope is essential for speech perception. Recent studies have shown that cortical activity can track the acoustic envelope. However, whether the tracking strength reflects the extent of speech intelligibility processing remains controversial. Here, using stereo-electroencephalogram (sEEG) technology, we directly recorded the activity in human auditory cortex while subjects listened to either natural or noise-vocoded speech. These two stimuli have approximately identical envelopes, but the noise-vocoded speech does not have speech intelligibility. We found two stages of envelope tracking in auditory cortex: an early high-γ (60-140 Hz) power stage (delay ≈ 49 ms) that preferred the noise-vocoded speech, and a late θ (4-8 Hz) phase stage (delay ≈ 178 ms) that preferred the natural speech. Furthermore, the decoding performance of high-γ power was better in primary auditory cortex than in non-primary auditory cortex, consistent with its short tracking delay. We also found distinct lateralization effects: high-γ power envelope tracking dominated left auditory cortex, while θ phase showed better decoding performance in right auditory cortex. In sum, we suggested a functional dissociation between high-γ power and θ phase: the former reflects fast and automatic processing of brief acoustic features, while the latter correlates to slow build-up processing facilitated by speech intelligibility.


Author(s):  
Susan Nittrouer ◽  
Joanna H. Lowenstein

Purpose: It is well recognized that adding the visual to the acoustic speech signal improves recognition when the acoustic signal is degraded, but how that visual signal affects postrecognition processes is not so well understood. This study was designed to further elucidate the relationships among auditory and visual codes in working memory, a postrecognition process. Design: In a main experiment, 80 young adults with normal hearing were tested using an immediate serial recall paradigm. Three types of signals were presented (unprocessed speech, vocoded speech, and environmental sounds) in three conditions (audio-only, audio–video with dynamic visual signals, and audio–picture with static visual signals). Three dependent measures were analyzed: (a) magnitude of the recency effect, (b) overall recall accuracy, and (c) response times, to assess cognitive effort. In a follow-up experiment, 30 young adults with normal hearing were tested largely using the same procedures, but with a slight change in order of stimulus presentation. Results: The main experiment produced three major findings: (a) unprocessed speech evoked a recency effect of consistent magnitude across conditions; vocoded speech evoked a recency effect of similar magnitude to unprocessed speech only with dynamic visual (lipread) signals; environmental sounds never showed a recency effect. (b) Dynamic and static visual signals enhanced overall recall accuracy to a similar extent, and this enhancement was greater for vocoded speech and environmental sounds than for unprocessed speech. (c) All visual signals reduced cognitive load, except for dynamic visual signals with environmental sounds. The follow-up experiment revealed that dynamic visual (lipread) signals exerted their effect on the vocoded stimuli by enhancing phonological quality. Conclusions: Acoustic and visual signals can combine to enhance working memory operations, but the source of these effects differs for phonological and nonphonological signals. Nonetheless, visual information can support better postrecognition processes for patients with hearing loss.


2021 ◽  
Vol 150 (4) ◽  
pp. A143-A144
Author(s):  
Francis X. Smith ◽  
Bob McMurray ◽  
Ruth Y. Litovsky ◽  
Inyong Choi

2021 ◽  
Vol 150 (4) ◽  
pp. A272-A272
Author(s):  
Julia R. Drouin ◽  
Rachel M. Theodore
Keyword(s):  

Author(s):  
Faizah Mushtaq ◽  
Ian M. Wiggins ◽  
Pádraig T. Kitterick ◽  
Carly A. Anderson ◽  
Douglas E. H. Hartley

AbstractWhilst functional neuroimaging has been used to investigate cortical processing of degraded speech in adults, much less is known about how these signals are processed in children. An enhanced understanding of cortical correlates of poor speech perception in children would be highly valuable to oral communication applications, including hearing devices. We utilised vocoded speech stimuli to investigate brain responses to degraded speech in 29 normally hearing children aged 6–12 years. Intelligibility of the speech stimuli was altered in two ways by (i) reducing the number of spectral channels and (ii) reducing the amplitude modulation depth of the signal. A total of five different noise-vocoded conditions (with zero, partial or high intelligibility) were presented in an event-related format whilst participants underwent functional near-infrared spectroscopy (fNIRS) neuroimaging. Participants completed a word recognition task during imaging, as well as a separate behavioural speech perception assessment. fNIRS recordings revealed statistically significant sensitivity to stimulus intelligibility across several brain regions. More intelligible stimuli elicited stronger responses in temporal regions, predominantly within the left hemisphere, while right inferior parietal regions showed an opposite, negative relationship. Although there was some evidence that partially intelligible stimuli elicited the strongest responses in the left inferior frontal cortex, a region previous studies have suggested is associated with effortful listening in adults, this effect did not reach statistical significance. These results further our understanding of cortical mechanisms underlying successful speech perception in children. Furthermore, fNIRS holds promise as a clinical technique to help assess speech intelligibility in paediatric populations.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Shae D. Morgan ◽  
Stacy Garrard ◽  
Tiffany Hoskins

Sign in / Sign up

Export Citation Format

Share Document