shadow effect
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 46)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 18 (6) ◽  
pp. 954-969
Author(s):  
Yunlin Gao ◽  
Huiqing Liu ◽  
Chao Pu ◽  
Huiying Tang ◽  
Kun Yang ◽  
...  

Abstract To extract more gas from shale gas reservoirs, the spacing among hydraulic fractures should be made smaller, resulting in a significant stress shadow effect. Most studies regarding the stress shadow effect are based on the assumption of homogeneity in rock properties. However, strong heterogeneity has been observed in shale reservoirs, and the results obtained with homogeneous models can be different from practical situations. A series of case studies have been conducted in this work to understand the effects of mechanical heterogeneity on multiple fracture propagation. Fracture propagation was simulated using the extended finite element method. A sequential Gaussian simulation was performed to generate a heterogeneous distribution of geomechanical properties. According to the simulation results, the difficulty of fracture propagation is negatively correlated with the Young's modulus and Poisson's ratio, and positively correlated with tensile strength. When each of the multiple fractures propagates in a homogeneous area with different mechanical properties, the final geometry of the fracture is similar to homogeneous conditions. When the rock parameter is a random field or heterogeneity perpendicular to the propagation direction of fracture, the fracture will no longer take the wellbore as the center of symmetry. Based on the analysis of fracture propagation in random fields, a small variance of elastic parameters can result in asymmetrical propagation of multiple fractures. Moreover, the asymmetrical propagation of hydraulic fractures is more sensitive to the heterogeneity of Poisson's ratio than Young's modulus. This study emphasises the importance of considering geomechanical heterogeneity and provides some meaningful suggestions regarding hydraulic fracturing designs.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012035
Author(s):  
Ke Wan

Abstract Tower shadow effect and wind shear may cause power oscillation of the unit. In order to study the influence of tower shadow effect and wind shear on the output power of wind turbine, a doubly-fed turbine was taken as an example. Firstly, the influence of tower shadow effect and wind shear was considered to study the periodic power fluctuation characteristics of wind turbines. Then, according to the dynamic model of mechanical transmission mechanism, the influences of the inertia constants of generator, fan and the stiffness coefficient of the shaft system on the transient performance of the wind power generation system were considered respectively. Finally, a single machine infinite bus system model including wind speed model is built on PSCAD/EMTDC platform for simulation. The results show that the tower shadow effect and wind shear component can cause the power fluctuation of the turbine. When the power fluctuation frequency of the turbine is equal to the natural oscillation frequency of the wind turbine shafting, the resonance of the turbine occurs, and the amplitude of oscillation is the largest. Changing the transmission parameters will affect the power fluctuation amplitude and speed response speed of the unit.


Geothermics ◽  
2021 ◽  
Vol 95 ◽  
pp. 102111
Author(s):  
Yota Suzuki ◽  
Seiichiro Ioka ◽  
Hirofumi Muraoka ◽  
Hiroshi Asanuma

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zixi Jiao ◽  
Anlin Zhang ◽  
Longhuan Du ◽  
Yang Yang ◽  
Hua Fan

Simultaneous multiple-fracture treatments in horizontal wellbores have become one of the key methods for economically and efficiently developing oil and gas resources in unconventional reservoirs. However, field data show that some perforation clusters have difficulty propagating fractures due to the internal mechanism of competing initiation and propagation among the fractures. In this paper, the physical mechanisms that influence simultaneous multiple-fracture initiation and propagation are investigated, and the effects of engineering parameters and in situ conditions on the nonuniform development of multiple fractures are discussed. A 3D fracture propagation model was established with ABAQUS to show the influence of the stress shadow effects and dynamic partitioning of the flow rate by simulating the propagation of multiple competing fractures generated in the perforation clusters. Based on the results of these simulations, simultaneous flow in multiple fractures can propagate evenly. Through adjusting the number of perforations in each cluster or the perforation diameter, the effect of the stress shadow can be significantly reduced by increasing the perforation friction, and the factors that affect the development of multiple fractures are changed, from the stress shadow effect to the dynamic partitioning of the flow rate. When the stress shadow effect is dominant, increasing the fracturing fluid viscosity promotes the uniform development of multiple fractures and increases the fracture width. When the dynamic partitioning of the flow rate is dominant, increasing the injection rate greatly affects the uniform development of multiple fractures.


Author(s):  
TOMMASO PAVONE ◽  
ØYVIND STIANSEN

We challenge the prevalent claim that courts can only influence policy by adjudicating disputes. Instead, we theorize the shadow effect of courts: policy makers preemptively altering policies in anticipation of possible judicial review. While American studies imply that preemptive reforms hinge on litigious interest groups pressuring policy makers who support judicial review, we advance a comparative theory that flips these presumptions. In less litigious and more hostile political contexts, policy makers may instead weaponize preemptive reforms to preclude bureaucratic conflicts from triggering judicial oversight and starve courts of the cases they need to build their authority. By allowing some preemptive judicial influence to resist direct judicial interference, recalcitrant policy makers demonstrate that shadow effects are not an unqualified good for courts. We illustrate our theory by tracing how a major welfare reform in Norway was triggered by a conflict within its Ministry of Labor and a government resistance campaign targeting a little-known international court.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4040
Author(s):  
Weige Han ◽  
Zhendong Cui ◽  
Zhengguo Zhu

When the shale gas reservoir is fractured, stress shadows can cause reorientation of hydraulic fractures and affect the complexity. To reveal the variation of stress shadow with perforation spacing, the numerical model between different perforation spacing was simulated by the extended finite element method (XFEM). The variation of stress shadows was analyzed from the stress of two perforation centers, the fracture path, and the ratio of fracture length to spacing. The simulations showed that the reservoir rock at the two perforation centers is always in a state of compressive stress, and the smaller the perforation spacing, the higher the maximum compressive stress. Moreover, the compressive stress value can directly reflect the size of the stress shadow effect, which changes with the fracture propagation. When the fracture length extends to 2.5 times the perforation spacing, the stress shadow effect is the strongest. In addition, small perforation spacing leads to backward-spreading of hydraulic fractures, and the smaller the perforation spacing, the greater the deflection degree of hydraulic fractures. Additionally, the deflection angle of the fracture decreases with the expansion of the fracture. Furthermore, the perforation spacing has an important influence on the initiation pressure, and the smaller the perforation spacing, the greater the initiation pressure. At the same time, there is also a perforation spacing which minimizes the initiation pressure. However, when the perforation spacing increases to a certain value (the result of this work is about 14 m), the initiation pressure will not change. This study will be useful in guiding the design of programs in simultaneous fracturing.


Author(s):  
Bibhash Nath ◽  
Wenge Ni-Meister

Forests are critical in regulating the world’s climate and they maintain overall Earth’s energy balance. The variability in forest canopy structure, topography and underneath vegetation background condition creates uncertainty in the estimation and modelling of Earth’s surface radiation particularly for boreal regions in high latitude. We studied seasonal variation in surface reflectance with respect to land cover classes, canopy structures, and topography in a boreal region of Alaska by fusing together Landsat 8 surface reflectance and LiDAR-derived canopy matrices. Our study shows that canopy structure and topography interplay and influence surface reflectance in a complex way particularly during the snow season. Topographic aspect and elevation control vegetation growth, type and structure. The southern slope is featured with more deciduous and taller trees having greater rugosity than the northern slope. Higher elevation is associated with taller trees for both vegetation types, particularly in the southern slope. In general, surface reflectance shows similar relationships with canopy cover, height and rugosity, mainly due to close relationships between these parameters. Surface reflectance decreases with canopy cover, tree height, and rugosity especially for evergreen forest. Deciduous forest shows larger variability of surface reflectance, particularly in March, mainly due to the mixing effect of snow and vegetation. The relationship between vegetation structure and surface reflectance is greatly impacted by topography. The negative relationship between elevation and surface reflectance may be due to taller and denser vegetation distribution in higher elevation. Surface reflectance in the southern slope is slightly larger than the northern slope for both deciduous and evergreen forest. The shadow effect from topography and tree crowns on surface reflectance play a different role for deciduous and evergreen forests. For deciduous forest, topographic shadow effect on surface reflectance is stronger than from tree shadowing in all seasons. For evergreen forest, shadow effects from topography and tree crowns on surface reflectance are both equally dominant, however tree shadow effect is more significant in March than in May and August. The generalized additive models (GAM) based on non-linear relationships between response (surface reflectance) and predictor (canopy structures and topography) variables confirms such observations. Our study not only provides accurate quantification of surface radiation budget but also helps in parametrization of climate change models.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1047
Author(s):  
Danmei Hu ◽  
Liwei Deng ◽  
Li Zeng

The aerodynamic performance of the floating offshore wind turbine (FOWT) is obviously affected by the motion of the platform, and becomes much more complicated considering the effect of tower shadow. In view of this, this paper aims at investigating the aerodynamic performance of the floating offshore wind turbine with and without a tower under the three most influential motions (surge, pitch and yaw) by computational fluid dynamic (CFD). The results show that the power of the wind turbine is reduced by 1.58% to 2.47% due to the tower shadow effect under the three motions, and the pressure difference distribution is most obviously interfered by the tower shadow effect under yaw motion and concentrates at the root and tip of the blade. In addition, the degree of interference of the tower shadow effect on the wake flow field is different under the three motions, resulting in a more complex wake structure. These conclusions can provide a theoretical basis and technical reference for the optimal design of floating offshore wind turbines.


Sign in / Sign up

Export Citation Format

Share Document