Comparison of the immediate effects of prefabricated soft medical insoles and custom-molded rigid medical insoles on plantar pressure distribution in athletes with flexible flatfoot

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Seyede Gelare Razavi Khorasani ◽  
Masumeh Bagherzadeh Cham ◽  
Ali Sharifnezhad ◽  
Hassan Saeedi ◽  
Behshid Farahmand
Author(s):  
Muge Kirmizi ◽  
Yesim Salik Sengul ◽  
Salih Angin

BACKGROUND: Flexible flatfoot is associated with altered plantar pressure distribution, but it is not clear how muscle fatigue affects plantar pressure characteristics in flexible flatfoot and normal foot. OBJECTIVE: To investigate the effects of calf muscles fatigue on plantar pressure variables in flexible flatfoot and normal foot. METHODS: Twenty-five people with flexible flatfoot and twenty-five people with normal foot were included. The unilateral heel-rise test was used to induce calf muscles fatigue. Plantar pressure variables were collected during preferred walking immediately before and after fatigue. The two-way mixed-design ANOVA was used to determine the main effect of fatigue and the interaction between foot posture and fatigue. RESULTS: Fatigue causes medialization of the contact area under the forefoot and the maximum force under the heel and forefoot (p< 0.05). When examining the differences in the effects of fatigue between groups, the contact area under the medial heel increased with fatigue in flexible flatfoot but decreased in normal foot; moreover, the contact area and maximum force under the midfoot and the maximum force under the third metatarsal decreased with fatigue in flexible flatfoot but increased in normal foot (p< 0.05). CONCLUSIONS: Calf muscles fatigue causes medialization of the maximum force and contact area. Especially the midfoot was affected differently by fatigue in flexible flatfoot and normal foot.


2012 ◽  
Vol 37 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Gholamreza Aminian ◽  
Zahra Safaeepour ◽  
Mahboobeh Farhoodi ◽  
Abbas Farjad Pezeshk ◽  
Hassan Saeedi ◽  
...  

Background:Previous studies have suggested that orthoses with different constructions could alter gait parameters in flexible flatfoot. However, there is less evidence about the effect of insoles with proprioceptive mechanism on plantar pressure distribution in flatfoot.Objectives:To assess the effect of orthoses with different mechanisms on plantar pressure distribution in subjects with flexible flatfoot.Study Design:Quasi-experimental.Methods:In total, 12 flatfoot subjects were recruited for this study. In-shoe plantar pressure in walking was measured by Pedar-X system under three conditions including wearing the shoe only, wearing the shoe with a proprioceptive insole, and wearing the shoe with a prefabricated foot insole.Results:Using the proprioceptive insoles, maximum force was significantly reduced in medial midfoot, and plantar pressure was significantly increased in the second and third rays (0.94 ± 0.77 N/kg, 102.04 ± 28.23 kPa) compared to the shoe only condition (1.12 ± 0.88 N/kg and 109.79 ± 29.75 kPa). For the prefabricated insole, maximum force was significantly higher in midfoot area compared to the other conditions ( p < 0.05).Conclusions:Construction of orthoses could have an effect on plantar pressure distribution in flatfeet. It might be considered that insoles with sensory stimulation alters sensory feedback of plantar surface of foot and may lead to change in plantar pressure in the flexible flatfoot.Clinical relevanceBased on the findings of this study, using orthoses with different mechanisms such as proprioceptive intervention might be a useful method in orthotic treatment. Assessing plantar pressure can also be an efficient quantitative outcome measure for clinicians in evidence-based foot orthosis prescription.


2002 ◽  
Vol 23 (8) ◽  
pp. 727-737 ◽  
Author(s):  
Carl W. Imhauser ◽  
Nicholas A. Abidi ◽  
David Z. Frankel ◽  
Kenneth Gavin ◽  
Sorin Siegler

This study quantified and compared the efficacy of in-shoe orthoses and ankle braces in stabilizing the hindfoot and medial longitudinal arch in a cadaveric model of acquired flexible flatfoot deformity. This was addressed by combining measurement of hindfoot and arch kinematics with plantar pressure distribution, produced in response to axial loads simulating quiet standing. Experiments were conducted on six fresh-frozen cadaveric lower limbs. Three conditions were tested: intact-unbraced; flatfoot-unbraced; and flatfoot-braced. Flatfoot deformity was created by sectioning the main support structures of the medial longitudinal arch. Six different braces were tested including two in-shoe orthoses, three ankle braces and one molded ankle-foot orthosis. Our model of flexible flatfoot deformity caused the calcaneus to evert, the talus to plantarflex and the height of the talus and medial cuneiform to decrease. Flexible flatfoot deformity caused a pattern of medial shift in plantar pressure distribution, but minimal change in the location of the center of pressure. Furthermore, in-shoe orthoses stabilized both the hindfoot and the medial longitudinal arch, while ankle braces did not. Semi-rigid foot and ankle orthoses acted to stabilize the medial longitudinal arch. Based on these results, it was concluded that treatment of flatfoot deformity should at least include use of in-shoe orthoses to partially restore the arch and stabilize the hindfoot.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1450
Author(s):  
Alfredo Ciniglio ◽  
Annamaria Guiotto ◽  
Fabiola Spolaor ◽  
Zimi Sawacha

The quantification of plantar pressure distribution is widely done in the diagnosis of lower limbs deformities, gait analysis, footwear design, and sport applications. To date, a number of pressure insole layouts have been proposed, with different configurations according to their applications. The goal of this study is to assess the validity of a 16-sensors (1.5 × 1.5 cm) pressure insole to detect plantar pressure distribution during different tasks in the clinic and sport domains. The data of 39 healthy adults, acquired with a Pedar-X® system (Novel GmbH, Munich, Germany) during walking, weight lifting, and drop landing, were used to simulate the insole. The sensors were distributed by considering the location of the peak pressure on all trials: 4 on the hindfoot, 3 on the midfoot, and 9 on the forefoot. The following variables were computed with both systems and compared by estimating the Root Mean Square Error (RMSE): Peak/Mean Pressure, Ground Reaction Force (GRF), Center of Pressure (COP), the distance between COP and the origin, the Contact Area. The lowest (0.61%) and highest (82.4%) RMSE values were detected during gait on the medial-lateral COP and the GRF, respectively. This approach could be used for testing different layouts on various applications prior to production.


2011 ◽  
Vol 33 (3) ◽  
pp. 396-400 ◽  
Author(s):  
Karin Elisabeth Fiedler ◽  
Wijnand Jan A. Stuijfzand ◽  
Jaap Harlaar ◽  
Joost Dekker ◽  
Heleen Beckerman

1995 ◽  
Vol 10 (5) ◽  
pp. 271-274 ◽  
Author(s):  
H Chen ◽  
BM Nigg ◽  
M Hulliger ◽  
J de Koning

Sign in / Sign up

Export Citation Format

Share Document