scholarly journals Host–parasite interactions that guide red blood cell invasion by malaria parasites

2015 ◽  
Vol 22 (3) ◽  
pp. 220-226 ◽  
Author(s):  
Aditya S. Paul ◽  
Elizabeth S. Egan ◽  
Manoj T. Duraisingh
EBioMedicine ◽  
2016 ◽  
Vol 9 ◽  
pp. 207-216 ◽  
Author(s):  
Sergei Biryukov ◽  
Evelina Angov ◽  
Mary E. Landmesser ◽  
Michele D. Spring ◽  
Christian F. Ockenhouse ◽  
...  

2008 ◽  
Vol 160 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Laetitia Vincensini ◽  
Gamou Fall ◽  
Laurence Berry ◽  
Thierry Blisnick ◽  
Catherine Braun Breton

2005 ◽  
Vol 8 (4) ◽  
pp. 422-427 ◽  
Author(s):  
Rebecca A O’Donnell ◽  
Michael J Blackman

2009 ◽  
Vol 28 (6) ◽  
pp. 725-735 ◽  
Author(s):  
Konstantinos Koussis ◽  
Chrislaine Withers-Martinez ◽  
Sharon Yeoh ◽  
Matthew Child ◽  
Fiona Hackett ◽  
...  

2017 ◽  
Vol 21 (6) ◽  
pp. 731-741.e10 ◽  
Author(s):  
Joana Mendonca Santos ◽  
Gabrielle Josling ◽  
Philipp Ross ◽  
Preeti Joshi ◽  
Lindsey Orchard ◽  
...  

2019 ◽  
Vol 18 (5) ◽  
pp. 270-280 ◽  
Author(s):  
Mary R Galinski

AbstractTwo simian malaria parasite species, Plasmodium knowlesi and Plasmodium cynomolgi, cause zoonotic infections in Southeast Asia, and they have therefore gained recognition among scientists and public health officials. Notwithstanding, these species and others including Plasmodium coatneyi have served for decades as sources of knowledge on the biology, genetics and evolution of Plasmodium, and the diverse ramifications and outcomes of malaria in their monkey hosts. Experimental analysis of these species can help to fill gaps in knowledge beyond what may be possible studying the human malaria parasites or rodent parasite species. The genome sequences for these simian malaria parasite species were reported during the last decade, and functional genomics research has since been pursued. Here research on the functional genomics analysis involving these species is summarized and their importance is stressed, particularly for understanding host–parasite interactions, and potentially testing novel interventions. Importantly, while Plasmodium falciparum and Plasmodium vivax can be studied in small New World monkeys, the simian malaria parasites can be studied more effectively in the larger Old World monkey macaque hosts, which are more closely related to humans. In addition to ex vivo analyses, experimental scenarios can include passage through Anopheline mosquito hosts and longitudinal infections in monkeys to study acute and chronic infections, as well as relapses, all in the context of the in vivo host environment. Such experiments provide opportunities for understanding functional genomic elements that govern host–parasite interactions, immunity and pathogenesis in-depth, addressing hypotheses not possible from in vitro cultures or cross-sectional clinical studies with humans.


Sign in / Sign up

Export Citation Format

Share Document