The role of malaria merozoite proteases in red blood cell invasion

2005 ◽  
Vol 8 (4) ◽  
pp. 422-427 ◽  
Author(s):  
Rebecca A O’Donnell ◽  
Michael J Blackman
2008 ◽  
Vol 160 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Laetitia Vincensini ◽  
Gamou Fall ◽  
Laurence Berry ◽  
Thierry Blisnick ◽  
Catherine Braun Breton

2017 ◽  
Vol 82 (6) ◽  
pp. 894-896
Author(s):  
Jean L Raphael ◽  

2017 ◽  
Vol 398 (3) ◽  
pp. 319-329 ◽  
Author(s):  
Christine C. Helms ◽  
Xiaohua Liu ◽  
Daniel B. Kim-Shapiro

Abstract Nitrite was once thought to be inert in human physiology. However, research over the past few decades has established a link between nitrite and the production of nitric oxide (NO) that is potentiated under hypoxic and acidic conditions. Under this new role nitrite acts as a storage pool for bioavailable NO. The NO so produced is likely to play important roles in decreasing platelet activation, contributing to hypoxic vasodilation and minimizing blood-cell adhesion to endothelial cells. Researchers have proposed multiple mechanisms for nitrite reduction in the blood. However, NO production in blood must somehow overcome rapid scavenging by hemoglobin in order to be effective. Here we review the role of red blood cell hemoglobin in the reduction of nitrite and present recent research into mechanisms that may allow nitric oxide and other reactive nitrogen signaling species to escape the red blood cell.


1982 ◽  
Vol 100 (3) ◽  
pp. 449-453 ◽  
Author(s):  
Lise Riopel ◽  
Jean-Claude Fouron ◽  
Harry Bard

1982 ◽  
Vol 101 (1) ◽  
pp. 47-60 ◽  
Author(s):  
STEVE F. PERRY ◽  
PETER S. DAVIE ◽  
DAVID J. RANDALL

A spontaneously ventilating blood-perfused trout preparation and saline perfused gill preparations were utilized to investigate the role of the erythrocyte and branchial epithelium in CO2 excretion and acid-base regulation. CO, excretion (MCOCO2) in blood-perfused preparations was positively correlated with haematocrit (Hct), and was abolished completely during plasma-perfusion. Elevating HCO3- concentration of input blood from 10 to 25 mM significantly increased MCOCO2. fourfold in blood-perfused preparations as a result of increased entry of HCO into the red blood cell and not into the gill epithelium. Increased HCO3- concentration was without effect in totally saline-perfused coho salmon (Onchorynchus kisutch). The addition of 4-acetamido-4′-wo-thiocyanatostilbene-2, 2 disulfonic acid (SITS; 10−4 M) to input blood significantly reduced MCO, and oxygen uptake (Mg,OO2) in blood-perfused fish due to inhibition of erythrocytic HCO3-exchange. Unlike blood-perfused preparations, no saline-perfused preparation (isolated holobranchs or totally perfused rainbow trout or coho salmon) displayed measureable CO, excretion at physiological Pco and pH. Increased input PCOt in both blood-perfused and saline-perfused preparations significantly increased MCOt due to enhanced branchial diffusion of molecular CO2. It is concluded that the entry of HCO3- into the erythrocyte is the rate-limiting step in CO, excretion and that movement of HCO3- from plasma to gill epithelium cells in no way contributes to overall CO3 elimination. Note: Department of Physiology and Anatomy, Massey University Palmerston North, New Zealand. Pacific Gamefish Foundation, P.O. Box 25115, Honolulu, Hawaii, U.S.A. 96825


Sign in / Sign up

Export Citation Format

Share Document