plasmodium knowlesi
Recently Published Documents


TOTAL DOCUMENTS

740
(FIVE YEARS 164)

H-INDEX

57
(FIVE YEARS 7)

Author(s):  
Laís Pessanha de Carvalho ◽  
Sara Groeger-Otero ◽  
Andrea Kreidenweiss ◽  
Peter G. Kremsner ◽  
Benjamin Mordmüller ◽  
...  

Boromycin is a boron-containing macrolide antibiotic produced by Streptomyces antibioticus with potent activity against certain viruses, Gram-positive bacteria and protozoan parasites. Most antimalarial antibiotics affect plasmodial organelles of prokaryotic origin and have a relatively slow onset of action. They are used for malaria prophylaxis and for the treatment of malaria when combined to a fast-acting drug. Despite the success of artemisinin combination therapies, the current gold standard treatment, new alternatives are constantly needed due to the ability of malaria parasites to become resistant to almost all drugs that are in heavy clinical use. In vitro antiplasmodial activity screens of tetracyclines (omadacycline, sarecycline, methacycline, demeclocycline, lymecycline, meclocycline), macrolides (oleandomycin, boromycin, josamycin, troleandomycin), and control drugs (chloroquine, clindamycin, doxycycline, minocycline, eravacycline) revealed boromycin as highly potent against Plasmodium falciparum and the zoonotic Plasmodium knowlesi. In contrast to tetracyclines, boromycin rapidly killed asexual stages of both Plasmodium species already at low concentrations (~ 1 nM) including multidrug resistant P. falciparum strains (Dd2, K1, 7G8). In addition, boromycin was active against P. falciparum stage V gametocytes at a low nanomolar range (IC50: 8.5 ± 3.6 nM). Assessment of the mode of action excluded the apicoplast as the main target. Although there was an ionophoric activity on potassium channels, the effect was too low to explain the drug´s antiplasmodial activity. Boromycin is a promising antimalarial candidate with activity against multiple life cycle stages of the parasite.


Author(s):  
Md Atique Ahmed ◽  
Gauspasha Yusuf Deshmukh ◽  
Rehan Haider Zaidi ◽  
Ahmed Saif ◽  
Mohammed Abdulrahman Alshahrani ◽  
...  

Malaria is a major public health concern, and any tangible intervention during the pre-elimination phase can result in a significant reduction in infection rates. Recent studies have reported that antigens producing cross-protective immunity can play an important role as vaccines and halt malaria transmission in different endemic regions. In this study, we studied the genetic diversity, natural selection, and discovered novel conserved epitopes of a high molecular weight rhoptry protein 2 (RhopH2) in clinical samples of Plasmodium knowlesi and Plasmodium vivax cross-protective domains, which has been proven to produce cross-protective immunity in both species. We found low levels of nucleotide diversity (P. knowlesi; π ~ 0.0093, SNPs = 49 and P. vivax π ~ 0.0014, SNPs = 23) in P. knowlesi (n = 40) and P. vivax (n = 65) samples in the PkRhopH2 cross-protective domain. Strong purifying selection was observed for both species (P. knowlesi; dS - dN = 2.41, p < 0.009, P. vivax; dS - dN = 1.58, p < 0.050). In silico epitope prediction in P. knowlesi identified 10 potential epitopes, of which 7 epitopes were 100% conserved within clinical samples. Of these epitopes, an epitope with 10 amino acids (QNSKHFKKEK) was found to be fully conserved within all P. knowlesi and P. vivax clinical samples and 80%–90% conservation within simian malaria ortholog species, i.e., P. coatneyi and P. cynomolgi. Phylogenetic analysis of the PkRhopH2 cross-protective domain showed geographical clustering, and three subpopulations of P. knowlesi were identified of which two subpopulations originated from Sarawak, Malaysian Borneo, and one comprised only the laboratory lines from Peninsular Malaysia. This study suggests that RhopH2 could be an excellent target for cross-protective vaccine development with potential for outwitting strain as well as species-specific immunity. However, more detailed studies on genetic diversity using more clinical samples from both species as well as the functional role of antibodies specific to the novel conserved epitope identified in this study can be explored for protection against infection.


2022 ◽  
Vol 12 ◽  
Author(s):  
Wenn-Chyau Lee ◽  
Shahhaziq Shahari ◽  
Samantha Yee Teng Nguee ◽  
Yee-Ling Lau ◽  
Laurent Rénia

Plasmodium knowlesi is responsible for zoonotic malaria infections that are potentially fatal. While the severe pathology of falciparum malaria is associated with cytoadherence phenomena by Plasmodium falciparum-infected erythrocytes (IRBC), information regarding cytoadherence properties of P. knowlesi-IRBC remained scarce. Here, we characterized the cytoadherence properties of RBC infected with the laboratory-adapted P. knowlesi A1-H.1 strain. We found that late-stage IRBC formed rosettes in a human serum-dependent manner, and rosettes hampered IRBC phagocytosis. IRBC did not adhere much to unexposed (unstimulated) human endothelial cell lines derived from the brain (hCMEC/D3), lungs (HPMEC), and kidneys (HRGEC). However, after being “primed” with P. knowlesi culture supernatant, the IRBC-endothelial cytoadherence rate increased in HPMEC and HRGEC, but not in hCMEC/D3 cells. Both endothelial cytoadherence and rosetting phenomena were abrogated by treatment of P. knowlesi-IRBC with trypsin. We also found that different receptors were involved in IRBC cytoadherence to different types of endothelial cells. Although some of the host receptors were shared by both P. falciparum- and P. knowlesi-IRBC, the availability of glycoconjugates on the receptors might influence the capacity of P. knowlesi-IRBC to cytoadhere to these receptors.


2021 ◽  
Author(s):  
Jennifer McDonald ◽  
Catherine J Merrick

Malaria parasites are unusual, early-diverging protozoans with non-canonical cell cycles. They do not undergo binary fission, but divide primarily by schizogony. This is a syncytial mode of replication involving asynchronous production of multiple nuclei within the same cytoplasm, culminating in a single mass cytokinesis event. The rate and efficiency of parasite replication is fundamentally important to malarial disease, which tends to be severe in hosts with high parasite loads. Here, we have studied for the first time the dynamics of schizogony in two human malaria parasite species, Plasmodium falciparum and Plasmodium knowlesi. These differ in their cell-cycle length, the number of progeny produced and the genome composition, among other factors. Comparing them could therefore yield new information about the parameters and limitations of schizogony. We report that the dynamics of schizogony differ significantly between these two species, most strikingly in the gap phases between successive nuclear replications, which are longer in P. falciparum and shorter, but more heterogenous, in P. knowlesi. In both species, gaps become longer as schizogony progresses, whereas each period of active replication grows shorter. In both species there is also extreme variability between individual cells, with some schizonts producing many more nuclei than others, and some individual nuclei arresting their replication for many hours while adjacent nuclei continue to replicate. The efficiency of schizogony is probably influenced by a complex set of factors in both the parasite and its host cell.


2021 ◽  
Author(s):  
Ruth K. Nyakundi ◽  
Jann Hau ◽  
Paul Ogongo ◽  
Onkoba Nyamongo ◽  
Maamum Jeneby ◽  
...  

Background. Naturally acquired immunity to malaria develops over several years and can be compromised by concomitant infections. This study explored the influence of chronic schistosomiasis on clinical outcome and immunity to repeated malaria infection. Methods. Two groups of baboons (n=8 each), were infected with Schistosoma mansoni cercariae to establish chronic infections. One of the two groups was treated with Praziquantel to eliminate schistosome infection. The two groups plus a new malaria control group (n=8), were inoculated three times with Plasmodium knowlesi parasites at one-month intervals. Clinical data, IgG, IgG1, memory T-cells and monocyte levels were recorded. Results. We observed after three P. knowlesi infections; i) reduced clinical symptoms in all groups with each subsequent infection, ii) increase IgG and IgG1in the malaria control (Pk-only) group iii) increased IgG and IgG1, CD14 + and CD14 - CD16 + in the Schistosoma treated (Schisto/PZQ+Pk) group and iv) significantly lower IgG and IgG1 levels compared to Pk-only, reduced CD4 + CD45RO + and increased CD14 - CD16 + cells in the co-infected (Schisto+Pk) group. Conclusion. Chronic S. mansoni does not compromise establishment of clinical immunity after multiple malaria infections with non-classical monocytes seeming to play a role. Failure to develop robust antibody and memory T-cells may have a long-term impact on acquired immunity to malaria infection.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mariko S. Peterson ◽  
Chester J. Joyner ◽  
Jessica A. Brady ◽  
Jennifer S. Wood ◽  
Monica Cabrera-Mora ◽  
...  

Abstract Background Kra monkeys (Macaca fascicularis), a natural host of Plasmodium knowlesi, control parasitaemia caused by this parasite species and escape death without treatment. Knowledge of the disease progression and resilience in kra monkeys will aid the effective use of this species to study mechanisms of resilience to malaria. This longitudinal study aimed to define clinical, physiological and pathological changes in kra monkeys infected with P. knowlesi, which could explain their resilient phenotype. Methods Kra monkeys (n = 15, male, young adults) were infected intravenously with cryopreserved P. knowlesi sporozoites and the resulting parasitaemias were monitored daily. Complete blood counts, reticulocyte counts, blood chemistry and physiological telemetry data (n = 7) were acquired as described prior to infection to establish baseline values and then daily after inoculation for up to 50 days. Bone marrow aspirates, plasma samples, and 22 tissue samples were collected at specific time points to evaluate longitudinal clinical, physiological and pathological effects of P. knowlesi infections during acute and chronic infections. Results As expected, the kra monkeys controlled acute infections and remained with low-level, persistent parasitaemias without anti-malarial intervention. Unexpectedly, early in the infection, fevers developed, which ultimately returned to baseline, as well as mild to moderate thrombocytopenia, and moderate to severe anaemia. Mathematical modelling and the reticulocyte production index indicated that the anaemia was largely due to the removal of uninfected erythrocytes and not impaired production of erythrocytes. Mild tissue damage was observed, and tissue parasite load was associated with tissue damage even though parasite accumulation in the tissues was generally low. Conclusions Kra monkeys experimentally infected with P. knowlesi sporozoites presented with multiple clinical signs of malaria that varied in severity among individuals. Overall, the animals shared common mechanisms of resilience characterized by controlling parasitaemia 3–5 days after patency, and controlling fever, coupled with physiological and bone marrow responses to compensate for anaemia. Together, these responses likely minimized tissue damage while supporting the establishment of chronic infections, which may be important for transmission in natural endemic settings. These results provide new foundational insights into malaria pathogenesis and resilience in kra monkeys, which may improve understanding of human infections.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Rungniran Sugaram ◽  
Patcharida Boondej ◽  
Suttipat Srisutham ◽  
Chanon Kunasol ◽  
Watcharee Pagornrat ◽  
...  

Abstract Background Thailand is committed to eliminating malaria by 2024. From 2013 to 2020, the total number of malaria cases have decreased, from 37,741 to 4474 (an 88.1% reduction). However, infections with Plasmodium knowlesi, a monkey malarial pathogen that can also infect humans, have been increasingly observed. This study focused on the molecular analysis of P. knowlesi parasites causing malaria in Thailand. Methods Under Thailand’s integrated Drug Efficacy Surveillance (iDES), which includes drug-resistance monitoring as part of routine case-based surveillance and responses, specimens were collected from malaria patients (n = 966) between 2018 and 2020. Thirty-one mono P. knowlesi infections (3.1%), most of which were from eastern and southern Thailand, were observed and confirmed by nested PCR assay and DNA sequencing. To evaluate whether these pathogens were from different lineages, cluster analysis based on seven microsatellite genotyping markers and the merozoite surface protein 1 (pkmsp1) gene was carried out. The P. knowlesi pyrimethamine resistance gene dihydrofolate reductase (pkdhfr) was sequenced and homology modelling was constructed. Results The results of analysing the seven microsatellite markers and pkmsp1 sequence demonstrated that P. knowlesi parasites from eastern Thailand were of the same lineage as those isolated in Cambodia, while the parasites causing malaria in southern Thailand were the same lineage as those isolated from Malaysia. The sequencing results for the pkdhfr genes indicated the presence of two mutations, Arg34Leu and a deletion at position 105. On analysis with homology modelling, the two mutations were not associated with anti-malarial drug resistance. Conclusions This report compared the genetic populations of P. knowlesi parasites in Thailand from 2018 to 2020 and have shown similar lineages as those isolated in Cambodia and Malaysia of P. knowlesi infection in Thailand and demonstrated that the P. knowlesi parasites were of the same lineages as those isolated in Cambodia and Malaysia. The parasites were also shown to be sensitive to pyrimethamine.


2021 ◽  
Vol 118 (48) ◽  
pp. e2114442118
Author(s):  
Kazuhide Yahata ◽  
Melissa N. Hart ◽  
Heledd Davies ◽  
Masahito Asada ◽  
Samuel C. Wassmer ◽  
...  

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


2021 ◽  
Author(s):  
Damilola R Oresegun ◽  
Peter Thorpe ◽  
Ernest Diez Benavente ◽  
Susana Campino ◽  
Muh Fauzi ◽  
...  

Plasmodium knowlesi, a malaria parasite of old-world macaque monkeys, is used extensively to model Plasmodium biology. Recently P. knowlesi was found in the human population of Southeast Asia, particularly Malaysia. P. knowlesi causes un-complicated to severe and fatal malaria in the human host with features in common with the more prevalent and virulent malaria caused by Plasmodium falciparum. As such P. knowlesi presents a unique opportunity to inform an experimental model for malaria with clinical data from same-species human infections. Experimental lines of P. knowlesi represent well characterised genetically static parasites and to maximise their utility as a backdrop for understanding malaria pathophysiology, genetically diverse contemporary clinical isolates, essentially wild-type, require comparable characterization. The Oxford Nanopore PCR-free long-read sequencing platform was used to sequence P. knowlesi parasites from archived clinical samples. The sequencing platform and assembly pipeline was designed to facilitate capturing data on important multiple gene families, including the P. knowlesi schizont-infected cell agglutination (SICA) var genes and the Knowlesi-Interspersed Repeats (KIR) genes. The SICAvar and KIR gene families code for antigenically variant proteins that have been difficult to resolve and characterise. Analyses presented here suggest that the family members have arisen through a process of gene duplication, selection pressure and variation. Highly evolving genes tend to be located proximal to genetic elements that drive change rather than regions that support core gene conservation. For example, the virulence-associated P. falciparum erythrocyte membrane protein (PfEMP1) gene family members are restricted to relatively unstable sub-telomeric regions. In contrast the SICAvar nd KIR genes are located throughout the genome but as the study presented here shows, they occupy otherwise gene-sparse chromosomal locations. The novel methods presented here offer the malaria research community new tools to generate comprehensive genome sequence data from small clinical samples and renewed insight into these complex real-world parasites.


Author(s):  
Becky Barney ◽  
Miguel Velasco ◽  
Caitlin Cooper ◽  
Andrew Rashid ◽  
Dennis Kyle ◽  
...  

Plasmodium lactate dehydrogenase (pLDH) is a common target in malaria rapid diagnostic tests (RDTs). These commercial antibody capture assays target either Plasmodium falciparum–specific pLDH (PfLDH), P. vivax–specific pLDH (PvLDH), or a conserved epitope in all human malaria pLDH (PanLDH). However, there are no assays specifically targeting P. ovale, P. malariae or zoonotic parasites such as P. knowlesi and P. cynomolgi. A malaria multiplex array, carrying the specific antibody spots for PfLDH, PvLDH, and PanLDH has been previously developed. This study aimed to assess potential cross-reactivity between pLDH from various Plasmodium species and this array. We tested recombinant pLDH proteins, clinical samples for P. vivax, P. falciparum, P. ovale curtisi, and P. malariae; and in vitro cultured P. knowlesi and P. cynomolgi. P. ovale-specific pLDH (PoLDH) and P. malariae-specific pLDH (PmLDH) cross-reacted with the PfLDH and PanLDH spots. Plasmodium Knowlesi-specific pLDH (PkLDH) and P. cynomolgi-specific pLDH (PcLDH) cross-reacted with the PvLDH spot, but only PkLDH was recognized by the PanLDH spot. Plasmodium ovale and P. malariae can be differentiated from P. falciparum by the concentration ratios of PanLDH/PfLDH, which had mean (range) values of 4.56 (4.07–5.16) and 4.56 (3.43–6.54), respectively, whereas P. falciparum had a lower ratio of 1.12 (0.56–2.61). Plasmodium knowlesi had a similar PanLDH/PvLDH ratio value, with P. vivax having a mean value of 2.24 (1.37–2.79). The cross-reactivity pattern of pLDH can be a useful predictor to differentiate certain Plasmodium species. Cross-reactivity of the pLDH bands in RDTs requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document