Deciphering arterial identity through gene expression, genetics, and chemical biology

2008 ◽  
Vol 15 (3) ◽  
pp. 221-227 ◽  
Author(s):  
Arpita Mukhopadhyay ◽  
Randall T Peterson
Author(s):  
Triantafyllos Paparountas ◽  
Maria Nefeli Nikolaidou-Katsaridou ◽  
Gabriella Rustici ◽  
Vasilis Aidinis

Microarray technology enables high-throughput parallel gene expression analysis, and use has grown exponentially thanks to the development of a variety of applications for expression, genetics and epigenetic studies. A wealth of data is now available from public repositories, providing unprecedented opportunities for meta-analysis approaches, which could generate new biological information, unrelated to the original scope of individual studies. This study provides a guideline for identification of biological significance of the statistically-selected differentially-expressed genes derived from gene expression arrays as well as to suggest further analysis pathways. The authors review the prerequisites for data-mining and meta-analysis, summarize the conceptual methods to derive biological information from microarray data and suggest software for each category of data mining or meta-analysis.


2009 ◽  
Vol 66 (9) ◽  
pp. 824-831 ◽  
Author(s):  
Timothy A. Klempan ◽  
Carl Ernst ◽  
Vesselina Deleva ◽  
Benoit Labonte ◽  
Gustavo Turecki

2013 ◽  
pp. 1196-1236
Author(s):  
Triantafyllos Paparountas ◽  
Maria Nefeli Nikolaidou-Katsaridou ◽  
Gabriella Rustici ◽  
Vasilis Aidinis

Microarray technology enables high-throughput parallel gene expression analysis, and use has grown exponentially thanks to the development of a variety of applications for expression, genetics and epigenetic studies. A wealth of data is now available from public repositories, providing unprecedented opportunities for meta-analysis approaches, which could generate new biological information, unrelated to the original scope of individual studies. This study provides a guideline for identification of biological significance of the statistically-selected differentially-expressed genes derived from gene expression arrays as well as to suggest further analysis pathways. The authors review the prerequisites for data-mining and meta-analysis, summarize the conceptual methods to derive biological information from microarray data and suggest software for each category of data mining or meta-analysis.


2014 ◽  
Vol 83 (2) ◽  
pp. 456-469 ◽  
Author(s):  
Rebecca Anthouard ◽  
Victor J. DiRita

In recent years, chemical biology and chemical genomics have been increasingly applied to the field of microbiology to uncover new potential therapeutics as well as to probe virulence mechanisms in pathogens. The approach offers some clear advantages, as identified compounds (i) can serve as a proof of principle for the applicability of drugs to specific targets; (ii) can serve as conditional effectors to explore the function of their targetsin vitroandin vivo; (iii) can be used to modulate gene expression in otherwise genetically intractable organisms; and (iv) can be tailored to a narrow or broad range of bacteria. This review highlights recent examples from the literature to illustrate how the use of small molecules has advanced discovery of novel potential treatments and has been applied to explore biological mechanisms underlying pathogenicity. We also use these examples to discuss practical considerations that are key to establishing a screening or discovery program. Finally, we discuss the advantages and challenges of different approaches and the methods that are emerging to address these challenges.


Author(s):  
W. K. Jones ◽  
J. Robbins

Two myosin heavy chains (MyHC) are expressed in the mammalian heart and are differentially regulated during development. In the mouse, the α-MyHC is expressed constitutively in the atrium. At birth, the β-MyHC is downregulated and replaced by the α-MyHC, which is the sole cardiac MyHC isoform in the adult heart. We have employed transgenic and gene-targeting methodologies to study the regulation of cardiac MyHC gene expression and the functional and developmental consequences of altered α-MyHC expression in the mouse.We previously characterized an α-MyHC promoter capable of driving tissue-specific and developmentally correct expression of a CAT (chloramphenicol acetyltransferase) marker in the mouse. Tissue surveys detected a small amount of CAT activity in the lung (Fig. 1a). The results of in situ hybridization analyses indicated that the pattern of CAT transcript in the adult heart (Fig. 1b, top panel) is the same as that of α-MyHC (Fig. 1b, lower panel). The α-MyHC gene is expressed in a layer of cardiac muscle (pulmonary myocardium) associated with the pulmonary veins (Fig. 1c). These studies extend our understanding of α-MyHC expression and delimit a third cardiac compartment.


Sign in / Sign up

Export Citation Format

Share Document