EFFECTS OF NITRATE CONCENTRATION AND IONIC STRENGTH ON NITRATE ANION EXCLUSION UNDER UNSATURATED FLOW CONDITIONS

Soil Science ◽  
2007 ◽  
Vol 172 (11) ◽  
pp. 842-860 ◽  
Author(s):  
Barry J. Allred
2008 ◽  
Vol 7 (2) ◽  
pp. 406-419 ◽  
Author(s):  
G. Gargiulo ◽  
S. A. Bradford ◽  
J. Simunek ◽  
P. Ustohal ◽  
H. Vereecken ◽  
...  

2007 ◽  
Vol 334-335 ◽  
pp. 437-440 ◽  
Author(s):  
Do Hoon Lee ◽  
Joon Ho Lee ◽  
Woo I. Lee

Liquid molding processes are becoming more popular among the composite manufacturing industries due to their versatility and economy among other merits. In analyzing the flow during the process, permeability is the most important parameter. Permeability has been regarded as a property of the porous medium. However, in many practical cases, the value may vary depending on the flow conditions such as the flow rate. It is speculated that this deviation is caused by inhomogeneous microstructure of the medium. In this study, numerical simulations as well as experimental measurements have been done to investigate the cause of deviation. Microstructure of porous medium was modeled as an array of porous cylinders. Resin flow through the array was simulated numerically. Simulations were performed for two different flow conditions, namely saturated flow and unsaturated flow. Based upon the results, permeabilities were estimated and compared for the two flow conditions. In addition, a model was proposed to predict the permeability for different flow conditions. Results showed that experimental data were in agreement with the prediction by the model.


2007 ◽  
Vol 6 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Barry J. Allred ◽  
Jerry M. Bigham ◽  
Glenn O. Brown

Weed Science ◽  
1982 ◽  
Vol 30 (6) ◽  
pp. 579-584 ◽  
Author(s):  
Jerome B. Weber ◽  
David M. Whitacre

Under unsaturated-flow conditions, bromacil (5-bromo-3-sec-butyl-6-methyluracil) was considerably more mobile than buthidazole {3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxyl-1-methyl-2-imidazolidinone}. Because of their high water solubilities, both herbicides were much more mobile than atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), prometon [2,4-bis (isopropylamino)-6-methoxy-s-triazine], or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea]. Under saturated-flow conditions, buthidazole was leached through Lakeland loamy sand in slightly greater amounts than tebuthiuron {N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea} or CN-10-3510 (formerly VEL 3510) {1-β,β-dimethoxyl-1-methyl-3-[5-(1,1-dimethylethyl)-1,3, 4-thiadiazol-2-yl] urea}. Distribution of the three herbicides in the leached soil was similar and relatively uniform. In Lakeland loamy sand, 30 times as much tebuthiuron was leached under saturated-flow conditions as under unsaturated-flow conditions. Intermittent saturated-unsaturated-flow conditions resulted in four times as much leaching of tebuthiuron as unsaturated flow alone. Only one-tenth as much tebuthiuron leached under intermittent saturated-unsaturated-flow conditions as under saturated-flow conditions. Tebuthiuron added to Lakeland soil and oven-dried was retained in significantly greater amounts than when added to moist Lakeland soil. Low amounts of tebuthiuron leached through Lakeland loamy sand, Portsmouth sandy loam, and Rains silt loam, but high amounts leached through Davidson clay. Greater amounts of the herbicide were retained in the surface zones of the three former soils, but the inverse was the case for the Davidson soil.


2002 ◽  
Vol 53 (1) ◽  
pp. 71-81 ◽  
Author(s):  
H. Weigand ◽  
K. U. Totsche ◽  
I. Kögel-Knabner ◽  
E. Annweiler ◽  
H. H. Richnow ◽  
...  

1993 ◽  
Vol 39 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Jerome B. Weber ◽  
Harry J. Strek ◽  
Jose L. Sartori

Sign in / Sign up

Export Citation Format

Share Document