scholarly journals Traumatic brain injury may worsen clinical outcomes after prolonged partial resuscitative endovascular balloon occlusion of the aorta in severe hemorrhagic shock model

2019 ◽  
Vol 86 (3) ◽  
pp. 415-423 ◽  
Author(s):  
Aaron M. Williams ◽  
Umar F. Bhatti ◽  
Isabel S. Dennahy ◽  
Nathan J. Graham ◽  
Vahagn C. Nikolian ◽  
...  
2017 ◽  
Vol 83 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Michael S. Lallemand ◽  
Donald M. Moe ◽  
John M. McClellan ◽  
Joshua P. Smith ◽  
Leo Daab ◽  
...  

Injury ◽  
2017 ◽  
Vol 48 (12) ◽  
pp. 2675-2682 ◽  
Author(s):  
Oğuz Eroğlu ◽  
Turgut Deniz ◽  
Üçler Kisa ◽  
Pınar Atasoy ◽  
Kuzey Aydinuraz

Peptides ◽  
2012 ◽  
Vol 35 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Chao Lin ◽  
Shou-Jiang Huang ◽  
Ning Wang ◽  
Zhi-Peng Shen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cynthia R. Muller ◽  
Vasiliki Courelli ◽  
Alfredo Lucas ◽  
Alexander T. Williams ◽  
Joyce B. Li ◽  
...  

AbstractTraumatic brain injury (TBI) is often accompanied by hemorrhage, and treatment of hemorrhagic shock (HS) after TBI is particularly challenging because the two therapeutic treatment strategies for TBI and HS often conflict. Ischemia/reperfusion injury from HS resuscitation can be exaggerated by TBI-induced loss of autoregulation. In HS resuscitation, the goal is to restore lost blood volume, while in the treatment of TBI the priority is focused on maintenance of adequate cerebral perfusion pressure and avoidance of secondary bleeding. In this study, we investigate the responses to resuscitation from severe HS after TBI in rats, using fresh blood, polymerized human hemoglobin (PolyhHb), and lactated Ringer’s (LR). Rats were subjected to TBI by pneumatic controlled cortical impact. Shortly after TBI, HS was induced by blood withdrawal to reduce mean arterial pressure (MAP) to 35–40 mmHg for 90 min before resuscitation. Resuscitation fluids were delivered to restore MAP to ~ 65 mmHg and animals were monitored for 120 min. Increased systolic blood pressure variability (SBPV) confirmed TBI-induced loss of autoregulation. MAP after resuscitation was significantly higher in the blood and PolyhHb groups compared to the LR group. Furthermore, blood and PolyhHb restored diastolic pressure, while this remained depressed for the LR group, indicating a loss of vascular tone. Lactate increased in all groups during HS, and only returned to baseline level in the blood reperfused group. The PolyhHb group possessed lower SBPV compared to LR and blood groups. Finally, sympathetic nervous system (SNS) modulation was higher for the LR group and lower for the PolyhHb group compared to the blood group after reperfusion. In conclusion, our results suggest that PolyhHb could be an alternative to blood for resuscitation from HS after TBI when blood is not available, assuming additional testing demonstrate similar favorable results. PolyhHb restored hemodynamics and oxygen delivery, without the logistical constraints of refrigerated blood.


Author(s):  
Vivek R Yadav ◽  
Alamdar Hussain ◽  
Jun Xie ◽  
Stanley Kosanke ◽  
Vibhudutta Awasthi

Sign in / Sign up

Export Citation Format

Share Document